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1 Introduction
Here are some long-standing problems in particle theory:

(1) How can we understand the hierarchical structure of the fundamental
interactions? Are the strong, medium strong (i.e. SU(3)-breaking), elec-
tromagnetic, and weak interactions truly independent, or is there some
principle that establishes connections between them ?

(2) How can we construct a renormalizable theory of the weak inter-
actions, one¢ which reproduces the low-energy successes of the Fermi theory
but predicts finite higher-order corrections?

(3) How can we construct a theory of electromagnetic interactions in
which electromagnetic mass differences within isotopic multiplets are
finite?

(4) How can we reconcile Bjorken scaling in deep inelastic electropro-
duction with quantum field theory? The SLAC-MIT experiments seem
to be telling us that the light-cone singularities in the product of two
currents are canonical in structure; ordinary perturbation theory, on the
other hand, tells us that the canonical structure is spoiled by logarithmic
factors, which get worse and worse as we go to higher and higher orders in
the perturbation expansion. Are there any theories of the strong interac-
tions for which we can tame the logarithms, sum them up and show they
are harmless?

Enormous progress has been made on all of these problems in the last
few years. There now exists a large family of models of the weak and
electromagnetic interactions that solve the second and third problem, and
we have discovered a somewhat smaller family of models of the strong
interactions that solve the fourth problem. As we shall see, the structure of
these models is such that we are beginning to get ideas about the solution
to the (very deep) first problem; connections are beginning to appear in
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unexpected places, and an optimist might say that we are on the road to
the first truly unified theory of the fundamental interactions. All of these
marvelous developments are based upon the ideas of spontaneous sym-
metry breakdown and gauge fields, the subjects of these lectures.

Honesty compels me to moderate the sales-pitch of the last paragraph
by pointing out that there is a fifth long-standing problem with which
these theories have not yet made contact:

(5) How do we explain experiments?

We can see the reason for this embarrassing lacuna if we think a little
bit more closely about the second problem, constructing a renormalizable
theory of the weak interactions. At the moment, there is a plethora of
such theories; they all predict that higher-order weak effects are finite,
and they all predict that they are small. To find which, if any, of these
theories is correct requires precision measurements of higher-order weak
effects (preferably purely leptonic ones, so the strong interactions don’t
corrupt our predictions); these are hard to come by. Phrased another way,
the Fermi theory is obviously dead wrong, because it predicts infinite
higher-order corrections, but it is experimentally nearly perfect, because
there are few experiments for which lowest-order Fermi theory is in-
adequate. Likewise for electromagnetic mass differences within isotopic
multiplets: to make the differences finite, we need only to tame the high-
energy behaviour of self-mass integrals; to actually compute them, though,
we have to know the integrals at all energies, including the low-energy
region where the strong interactions are dominant (and incalculable).

These lectures are intended as an introduction to the basic ideas of
spontaneous symmetry breakdown and gauge fields, not as a survey of all
the work done to date, and there are some important topics that I will not
discuss at all. In particular, I will not touch at all upon the important sub-
ject of model-building; indeed, in order to simplify my examples as much
as possible, I will barely mention theories involving fermions at all.
Also, although I will try and make the renormalizability of the theories
we discuss plausible, I will have no time to go into the guts of the renorma-
lization problem, and therefore will say nothing about the beautiful
dimensional regularization procedure of Veltman and 't Hooft, nor about
the non-Abelian generalizations of the Ward identities of quantum
electrodynamics, the Slavnov identities.

The organization of these lectures is as follows: Section 2 is a discussion
of spontaneous symmetry breakdown, Goldstone bosons, gauge fields,
and the Higgs phenomenon in the simplest context, that of classical field
theory. Section 3 shows how these ideas can be extended to quantum field
theory in such a way that the classical reasoning of the previous section
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becomes the first term in a systematic quantum expansion. The important
concept of the effective potential makes its first appearance here, and its
properties are discussed at length. However, an important part of the
quantization program is postponed : the quantization of gauge fields. This
gaping hole in the arguments of Section 3 is filled in the next two sections.
Section 4 is an introduction to functional integration as a method of
quantization, and Section 5 is an application of this method to gauge
fields, following the ideas of Faddeev and Popov. I have tried to make
Section 4 as self-contained as possible, so it may be useful to the reader
who wants to learn functional integration, even if he is uninterested in
the other topics of these lectures. Section 6 takes off in a new direction and
explores the asymptotic properties of gauge field theories. It includes a
brief review of the renormalization group.

I havelearned much from conversations with Ludwig Faddeev, Howard
Georgi, Sheldon Glashow, Jeffrey Goldstone, David Gross, Benjamin
Lee, David Politzer, Gerard 't Hooft, Tini Veltman, Erick Weinberg,
Steven Weinberg, and Frank Wilczek. Many authors who have made
major contributions to this subject (including a large subset of the above)
are inadequately represented in the references at the end of these lectures,
because of my eccentric choice of topics and methods of approach; to
these I apologize, as I do to those whom I have omitted through ig-
norance.’ '

2 Secret symmetries in classical field theory
2.1 The idea of spontaneous symmetry breakdown

In general, there is no reason why an invariance of the Hamilton-
ian of a quantum-mechanical system should also be an invariance of the
ground state of the system. Thus, for example, the nuclear forces are rota-
tionally invariant, but this does not mean that the ground state of a
nucleus is necessarily rotationally invariant (i.e. of spin zero). This is a
triviality for nuclei, but it has highly non-trivial consequences if we con-
sider systems which, unlike nuclei, are of infinite spatial extent. The stan-
dard example is the Heisenberg ferromagnet, an infinite crystalline array
of spin-§ magnetic dipoles, with spin—spin interactions between nearest
neighbors such that neighboring dipoles tend to align. Even though the
Hamiltonian is rotationally invariant, the ground state is not; it is a state
in which all the dipoles are aligned in some arbitrary direction, and is
infinitely degenerate for an infinite ferromagnet. A little man living inside
such a ferromagnet would have a hard time detecting the rotational
invariance of the laws of nature; all his experiments would be corrupted by
the background magnetic field. If his experimental apparatus interacted
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only weakly with the background field, he might detect rotational invari-
ance as an approximate symmetry; if it interacted strongly, he might miss
it altogether; in any case, he would have no reason to suspect that it was in
fact an exact symmetry. Also, the little man would have no hope of detect-
ing directly that the ground state in which he happens to find himself is
in fact part of an infinitely degenerate multiplet. Since he is of finite
extent (this is the technical meaning of ‘little’), he can only change the
direction of a finite number of dipoles at a time; but to go from one
ground state of the ferromagnet to another, he must change the directions
of an infinite number of dipoles — an impossible task.

At least at first glance, there appears to be nothing in this picture that
can not be generalized to relativistic quantum mechanics. For the Hamil-
tonian of a ferromagnet, we can substitute the Hamiltonian of a quantum
field theory; for rotational invariance, some internal symmetry; for the
ground state of the ferromagnet, the vacuum state; and for the little man,
ourselves, That is to say, we conjecture that the laws of nature may possess
symmetries which are not manifest to us because the vacuum state is
not invariant under them.? This situation is usually called ‘spontaneous
breakdown of symmetry’. The terminology is slightly deceptive, because
the symmetry is not really broken, merely hidden, but we’ll use it anyway.

We will begin by investigating spontaneous symmetry breakdown in
the case of classical field theory. For simplicity, we will restrict ourselves
to theories involving a set of n real scalar fields, which we will assemble
into a real n-vector, ¢, with Lagrange density?

1
¥ =5(0,4) (") - U(9), (2.1)

where U is some function of the ¢s, but not of their derivatives. We will
treat these theories purely classically, but use quantum-mechanical
language; thus, we will call the state of lowest energy ‘the vacuum’, and
refer to the quantities which characterize the spectra of small oscillations
about the vacuum as ‘particle masses’. For any of these theories, the
energy density is

1 1
A =008 +5(VH) + U (@) 22)

Thus the state of lowest energy is one for which the value of ¢ is a con-
stant, which we denote by {(¢). The value of (¢) is determined by the
detailed dynamics of the particular theory under investigation, that is to
say, by the location of the minimum (or minima) of the potential U.
Sticking to our policy of using quantum language, we will call {¢) ‘the
vacuum expectation value of ¢".
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Within this class of theories, it is easy to find examples for which
symmetries are either manifest or spontaneously broken. The simplest one
i1s the theory of a single field for which the potential is

A 2 :
U= ¢>4+“7 2, (2.3)

where 4 is a positive number and p* (despite its name) can be either posi-
tive or negative. This theory admits the symmetry

p——¢. (2.4)
If 4% is positive, the potential is as shown in Fig. 1. The vacuum is at {¢)
cquals zero, the symmetry is manifest, and u? is the mass of the scalar
meson. If p? is negative, though, the situation is quite different; the
potential 1s as shown in Fig. 2. In this case, it is convenient to introduce the
Juantity

a’= —6u?/i, (2.5)

and to rewrite the potential as
A
U=g (¢?—a?)?, (2.6)

phis an (irrelevant) constant. It is clear from this formula, and also from
the figure, that the potential now has two minima, at ¢ = +a. Because
ol the symmetry (2.4), which one we choose as the vacuum is irrelevant to
the resulting physics; however, whichever one we choose, the symmetry is
spontaneously broken. Let us choose {¢)=a. To investigate physics

Fig. 1

Fig. 2
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about the asymmetric vacuum, let us define a new field

¢ =d—a. (2.7
In terms of the new (‘shifted’) field,

A
U= (¢ +2a¢)"

A Aa Aa?
—__ 4 3 o
TR
We see that the true mass of the meson is Aa?/3. Note that a cubic meson
self-coupling has appeared as a result of the shift, which would make it

hard to detect the hidden symmetry (2.4) directly.

¢'2. (2.8)

22 Goldstone bosons in an Abelian model

A new phenomenon appears if we consider the spontaneous
breakdown of continuous symmetries. Let us consider the theory of two
scalar fields, A and B, with

A
U= (42 + B —a"] (2.9)

This theory admits a continuous group of symmetries isomorphic to the
two-dimensional rotation group, SO(2):

A—A cos w+ B sin w,

B— — A sin w+ B cos w. (210

The minima of the potential lie on the circle
A2+ B?=a? (2.11)
Just as before, which of these we choose as the vacuum is irrelevant, but

whichever one we choose, the SO(2) internal symmetry is spontaneously
broken. Let us choose

(A)=a, (B)=0. (2.12)
As before, we shift the fields,

¢ =4—(9), (213)
and find

U=%(A’2+B’2+20A’)2. (2.14

Expanding this, we see that the A-meson has the same mass as before, but
the B-meson is massless. Such a massless spinless meson is called a
Goldstone boson;* for the class of theories under consideration, its
appearance does not depend at all on the special form of the potential U,



Secret symmetries in classical field theory 119

but is a consequence only of the spontaneous breakdown of the continuous
SO(2) symmetry group (2.10).
To show this, let us introduce ‘angular variables’,

A=p cos 6,

B=p sin 6. (2.15)
In terms of these variables, (2.10) becomes

p—p

6— 0+ w, (2.16)

and the Lagrange density becomes
1 1
£ =5(0,0) +5 PH0,0) = U(p). (2.17)

In terms of these variables, SO(2) invariance is simply the statement that
{/ does not depend on 6. The transformation to angular variables is, of
course, ill-defined at the origin, and this is reflected in the singular form
of the derivative part of the Lagrange density (2.17). However, this is of no
interest to us, since we wish to do perturbation expansions not about the
origin, but about an assumed asymmetric vacuum. With no loss of
generality, we can assume this vacuum is at (p) =a, (#)=0. Introducing
shifted fields as before,

p'=p—a,
0=, (2.18)
we find
1 1
L4 =5(6,,p')2+§(p'+a)2(5u9')2— U(p' +a). (2.19)

It is clear from this expression that the 6-meson is massless, just because
the 0-field enters the Lagrangian only through its derivatives.

This can also be seen purely geometrically, without writing down any
tformulae. If the vacuum is not invariant under SO(2) rotations, then there
is a curve passing through the vacuum along which the potential is
constant; this is the curve of points obtained from the vacuum by SO(2)
totations — in terms of our variables, the curve of constant p. If we expand
the potential around the vacuum, no terms can appear involving the
variable that measures displacement along this curve — the 6 variable.
Hence we always have a massless meson.

AR Goldstone bosons in the general case
This argument can easily be generalized to the spontaneous
breakdown of a general continuous internal symmetry group. I will give



120 Secret symmetry : spontaneous symmetry breakdown, gauge fields

the generalization using somewhat more mathematical apparatus than is
really necessary, in order to establish some notation that will be useful to
us later on. Let us assume that we have a set of n real fields, ¢, such that
the potential is invariant under a group of transformations

poeT™P, (2.20)
where the Ts are a set of N real antisymmetric matrices, the group genera-

tors, the ws are arbitrary real parameters, and the sum over repeated
indices is implied. The associated infinitesimal transformations are

0¢ = T,00°¢. (2.21)
Since the Ts are group generators, they obey the relations
[T, ] =ca T2, (2.22)

where the ¢s are the structure constants of the group. If we choose the
Ts to be orthonormal (in the trace norm), then ¢ is completely anti-
symmetric. Invariance of the Lagrange density (2.1) implies that

U(g)=U(e"*"¢). (2.23)

Now let us consider the subgroup of (2.20) that leaves {¢), the minima of
U, invariant. Depending on the structure of U, this may be anything from
the trivial identity subgroup (all symmetries spontaneously broken) to
the full group (no symmetries spontaneously broken). In any case, though,
we can always choose our group generators such that this subgroup is
generated by the first M generators, where N> M >0. In equations,

T($)=0, a<M. (2.24)

By definition, the remaining (N — M) generators do not leave {¢) invari-
ant; thus we have, passing through (¢), an (N — M)-dimensional surface
of constant U. Thus, by the same arguments as before, the theory must
contain (N — M) massless spinless mesons, one for each spontaneously
broken infinitesimal symmetry. (Note that I say ‘spinless’, not ‘scalar’ or
‘pseudoscalar’. The mesons may be either scalar or pseudoscalar, depend-
ing on the parity-transformation properties of the spontaneously broken
generators; they may even have no well-defined parity at all, if parity is
itself spontaneously broken, or if the original Lagrangian is not parity
conserving.)

These mesons are called Goldstone bosons, and what we have proved in
the preceding paragraph is a special case of Goldstone’s theorem.* The
theorem can be proved in much greater generality: given a field theory
obeying the usual axioms (Lorentz invariance, locality, Hilbert space with
positive-definite inner product, etc.), if there is a local conserved current
(the axiomatic version of the statement that the Lagrangian is invariant
under some continuous transformation) such that the space integral of
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its time component does not annihilate the vacuum state, then the theory
necessarily contains a massless spinless meson, with the same internal-
symmetry and parity properties as the time component of the current.’

At first glance, Goldstone’s theorem seems to be a killing blow to the
idea that spontaneous breakdown (at least of continuous symmetries) is
at work in the real world, for there is not a smidgen of experimental
evidence for the existence of massless spinless mesons. However, there is
one loophole: there do exist perfectly respectable field theories which do
not obey the usual axioms. These are gauge field theories, of which
quantum electrodynamics is the most familiar. There is no gauge in which
quantum electrodynamics obeys all the axioms simultaneously; if we
quantize in a covariant gauge, the theory contains states of negative norm,
associated with the longitudinal photons; if we quantize in a gauge in
which the theory has only states of positive norm, such as radiation gauge,
the theory is not covariant. We will now investigate this loophole in
more detail.

24 The Higgs phenomenon in the Abelian model

I will begin by reviewing the minimal-coupling prescription of
ordinary quantum electrodynamics, and its connection with gauge
invariance. Let ¢ be a set of fields (not necessarily real and spinless), with
dynamics determined by a Lagrange density, (¢, 0,¢). Let £ be invariant
under a one-parameter group of transformations,

b2, (2.25)

where Q is a Hermitian matrix, called the charge matrix. (Conventionally,
a set of complex basis fields of definite charge is chosen, so that Q is diag-
onal. However, for our purposes, it will be more convenient to choose a
real set of fields, so that iQ is a real antisymmetric matrix, like the Ts in
Eq. (2.20).) The associated infinitesimal transformation is

5¢ =iQddw. (2.26)

Now let us consider transformations of the same form as Eq. (2.26), but
with éw space-time dependent (gauge transformations). Our theory is not
invariant under these transformations, since

and the second term spoils the invariance. We can take care of this,
though, by enlarging the theory and introducing a new field, 4, the gauge
ficld, that transforms according to

1 \
0A,=— O, (0m), (2.28)
('
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where ¢ is a free parameter, called the electric charge. If we now define

D,¢=0,0+1eQA,9, (2.29)
then

0D, =iQ¢dw, (2.30)
and

Z(¢,D,¢) (2.31)

is gauge invariant. D,¢ is called the gauge-covariant derivative, or some-
times just the covariant derivative. Of course, the expression (2.31) by
itself can not be the total Lagrange density for a physically interesting
theory; it contains no terms proportional to the derivatives of A4,, so if
we vary it with respect to A, we obtain, not true equations of motion, but
equations of constraint. To make the gauge field a true dynamical variable,
we must add a term involving derivatives; the simplest gauge-invariant
choice is a term proportional to (F,,)?, where

F,=8,4,—0,4,. (2.32)

By convention, A, is normalized such that the final Lagrange density is
1

This is just the usual Lagrange density of minimally-coupled electro-
dynamics, and it has the usual physical interpretation (charged particles,
massless photons, etc.), if the dynamics of the ¢-fields are such that the
symmetry (2.25) does not suffer spontaneous breakdown. But what
happens if the symmetry is spontaneously broken, as in (2.10)?

This question is most easily answered if we use the angular variables
defined by Eq. (2.15). We can avoid some tedious algebra by observing
that Eq. (2.29) can be rewritten as

é¢

D,¢=0,0+eA, S (2.34)
In this form, it can be directly applied to the angular variables. From
Eq. (2.16), it follows that

D,up’ =aupw,
and (2.35)

D,0'=0,0' +eA,.

Applying this to Eq. (2.19) we obtain
1

I
L= 0,404+ @)

1
+, 00+ W04 ¢A) - Ulp' +a) (2.36)
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1t is hard to directly read off the predictions of this expression for small
oscillations about the vacuum, because of the presence of quadratic cross
terms, terms proportional to 4,0*6'. However, these can be eliminated by
introducing the new variable

c,=A,+e '0,0. (2.37)

In terms of this,
2

1 1 e
L= Z (aucv_avcu)z +§(aup’)2+? (p’ +a)2(cu)2 - U(p’+a)

(2.38)

Since the quadratic part of the Lagrangian is now in diagonal form, we can
read off the eigenmodes for small vibrations about the ground state, or, in
the quantum language we have been using, the particle spectrum. We sece
that there is a massive scalar meson associated with the p'-field, whose
mass depends on the form of U. There is also a massive vector meson
associated with the c-field, with mass given by

mé =e?a’. (2.39)

But the Goldstone boson, the 6-field, has completely disappeared! This
seems a little less preposterous if we count degrees of freedom. A massive
vector meson has three degrees of freedom, the three spin states of a spin-
one particle, while a massless vector meson has only two, the two helicity
states of the photon. What has happened is that the two degrees of freedom
of the massless gauge field and the one degree of freedom of the Goldstone
hoson have combined together to make the three degrees of freedom of the
¢-field. The vector meson has eaten the Goldstone boson and grown heavy.

This magic trick was discovered by Peter Higgs, and is called the Higgs
phenomenon. (Actually, the terminology is unfair, since the phenomenon
was discovered independently by several other investigators, but we will
use it anyway, since it is awkward to talk of the Brout—Englert—Guralnik —
Hagen-Higgs—Kibble phenomenon.)® We can gain further insight into
the Higgs phenomenon if we remember the motivation for the minimal-
coupling prescription — gauge invariance.

Gauge invariance tells us that our theory is invariant under transforma-
tions of the form

0—0 + w, (2.40)

with w an arbitrary function of space and time. In particular, this means
we can choose o to be minus 0, that is to say, pick our gauge in such a way
that the 6-ficld is identically zero. The rcason the Goldstone boson dis-
appears in the gauge-invariant theory is that it was never there in the first
place: the degree of freedom that would be associated with the Goldstone
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boson is a mere gauge phantom, an object that can be gauged away, like
a longitudinal photon.

It isnow clear how to extend the Higgs phenomenonto a general internal
symmetry group, like (2.20). We merely have to add extra degrees of
freedom (gauge fields) to promote the whole internal symmetry group to a
gauge group. If we can do this, then we can always gauge away the degrees
of freedom that would correspond to Goldstone bosons, and kill the
Goldstone bosons before they are born. To carry out this scheme, though,
we need first to develop the theory of gauge fields for general internal
symmetry groups.

2.5 Yang—Mills fields and the Higgs phenomenon in the general case

How do we make a general internal symmetry group a gauge
group? We will follow closely our discussion of electromagnetism. We
begin with a theory that is invariant under transformations of the form
(2.21),

5¢ = T.51°¢. 2.21)

Now let us consider transformations of the same form, but with dw®
space-time dependent. Our theory is not invariant under these trans-
formations, since

0(0,9)= T,0w°0 ¢ + T(0,00w")P, (2.41)
and the second term spoils the invariance. We will try to take care of this

by introducing a set of N gauge fields, Aj, one for each group generator,
and defining the covariant derivatives

D,$=0,6+gT,A%. (2.42)

where g, like e, is a free parameter. (For the moment, we will postpone
the question of whether we can choose different gs for different gauge
fields.) We wish to define the transformation properties of the gauge

fields such that
oD, ¢d)=T,00°D, ¢. (2.43)
It is easy to see that this implies that

1
B4 = MO0 — 0,30, (2.44)

where the cs are the structure constants of the group, defined in Eq. (2.22).
(Both terms in this expression are easy to understand. The second term is
a trivial generalization of the electromagnetic gauge transformation, Eq.
(2.28). The first term is necessary to insure the invariance of the gauge-
field couplings under space-time independent transformations; it states
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that, under such transformations, the gauge fields transform like the group
generators. (E.g., if the gauge group is isospin, the gauge fields must form
an isovector.)) It follows from Eq. (2.43) that

Z(¢,D,9) (2.45)
Is gauge invariant.
It is a bit harder to see what is the generalization of the free electro-
magnetic Lagrange density, (F,,)?. The trick is to observe that, for electro-
magnetism

(DuDv - DvDu)¢ = IQF,uv¢ (246)

From this equation, the gauge invariance of F,, follows directly. In our
case,

(D,uDv - DvDu)¢ = EF;V¢3 (2'47)
where

Fo,=3,A%—8,A%+ gc™ AL AC. (2.48)
From Eq. (2.46), it follows directly that Fj, is, not gauge-invariant, but
gauge-covariant,

OF4, = 6w Fs,,. (2.49)

However, the quadratic form (F4,)? is gauge-invariant, and therefore the
generalization of the electromagnetic Lagrange density (2.33) is

- % (Fi)?+Z(¢, D, o). (2.50)

The first Lagrange density of this type (for the special case of the isospin
group) was constructed by Yang and Mills; for this reason non-Abelian
gauge fields are frequently called Yang—Mills fields.”

Note that for non-Abelian gauge fields, in contrast to electromagnetism,
there is a non-trivial interaction even in the absence of the ¢-fields, because
of the non-linear form of Fj,. There is a good physical reason for this,
which is most easily seen by going to a particular example. Let us imagine
that the gauge group is isospin. Just as the photon couples to every field
that carries non-zero charge, so the I, gauge meson, for example, must
couple to every field that carries non-zero I,. But among these ficlds are
the other two members of the isotriplet of gauge fields. (It is for precisely
the same reason that gravitation is inherently non-linear; the gravitational
licld couples to everything that carries energy density, including the
gravitational field itself.)

Now let us return to the postponed question of whether we can have
different coupling constants for different gauge fields. If the gauge group
1s simple (like SU(2) or SU(3)), the generators of the group, and therefore
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the gauge fields, transform irreducibly under the action of the group;
therefore they must all have the same coupling constant. However, if the
gauge group is a product of simple factors (like SU2)®SU(2)), then the
generators of different factors never mix with each other under the action
of the group, and the associated gauge fields can have different coupling
constants. Thus there are as many independent coupling constants as
there are simple factors in the gauge group, and Eq. (2.44), for example,
should properly be written as

OAL=c"6wP A — gl 3,00°. (2.44")
(no sum on a), where g, can take on different values for gauge fields asso-
ciated with different factor groups.

Now that we have developed the classical theory of non-Abelian gauge
fields, let us apply it to spontaneous symmetry breakdown. Since the entire
internal symmetfy group has been promoted to a gauge group, we can
always choose our gauge such that the degrees of freedom that would
become Goldstone bosons disappear. From our experience with the
Abelian model, we would expect the gauge fields associated with the
spontaneously broken symmetries to acquire masses. It is easy to see that
the only relevant part of the Lagrange density (2.1) is the derivative term

1
,Sf=:2— (0. P) ("P)+ ... (2.51)
In the presence of the gauge fields this becomes
1
& =5(5u¢ + 9. A, T,8) (O + g AL T ) + - - - (2.52)

When we shift the fields, this generates a mass term

L =(g. A T(D)) (g AL TN+ - - - . (2.53)
Note that gauge fields associated with symmetries that are not spon-
taneously broken, that is to say, those for which

T.(¢)=0, (2.54)

remain massless. Thus, if we wish to have a theory of this type with a
realistic particle spectrum, the entire gauge group must be spontaneously
broken, except for a one-parameter subgroup. We identify this subgroup
with electric charge, and the corresponding gauge field with the only
observed massless vector meson, the photon.

2.6 Summary and remarks
(1) We have discovered a large family of field theories that display
spontaneous breakdown of internal symmetries. If the spontancously
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broken symmetry is discrete, this causes no problems; however, if the
symmetry is continuous, symmetry breakdown is associated with the
appearance of Goldstone bosons. This can be cured by coupling gauge
fields to the system and promoting the internal symmetry group to a
gauge group; the Goldstone bosons then disappear and the gauge mesons
acquire masses. It is pleasant to remember that, at the times of their
inventions, both the theory of non-Abelian gauge fields and the theory of
spontaneous symmetry breakdown were thought to be theoretically
amusing but physically untenable, because both predicted unobserved
massless particles, the gauge mesons and the Goldstone bosons. It was
only later that it was discovered that each of these diseases was the other’s
cure.

(2) Everything we have done so far has been for classical field theory.
One of the main tasks before us is to see to what extent the apparatus of
this section can be extended into the quantum domain. We shall see that,
at least for weak couplings, it survives substantially unchanged; in
particular, all of the equations we have derived can be reinterpreted as the
first terms in a systematic quantum expansion.

(3) We have not touched at all on theories with fermions. It is trivial
that if we couple fermions to the scalar-meson systems we have discussed,
either directly (through Yukawa couplings) or indirectly (through gauge
field couplings), then the shift in the scalar fields will induce an apparent
symmetry-violating term in the fermion part of the Lagrangian. A more
interesting question is whether spontaneous symmetry breakdown can
occur in a theory without fundamental scalar fields. For example, perhaps
bilinear forms in Fermi fields can develop symmetry-breaking vacuum
expectation values all by themselves. I will have nothing to say about this
possibility here, not because it is not important, but because so little is
known about it.® (There is one exactly soluble model without fundamental
scalars that displays the full Goldstone—Higgs phenomenon. This is the
Schwinger model, quantum electrodynamics of massless fermions in
two-dimensional space-time.)®

(4) It is important to realize that we can make the effects of spontaneous
symmetry breakdown as large or as small as we want, by appropriately
fudging the parameters in our models. Thus, in the real world, some of the
spontaneously broken symmetries of nature may be observed as approxi-
mate symmetries in the usual sense, and others may be totally inaccessible
to direct observation. Also, of course, there is no objection to exact or
approximate symmetries of the usual kind coexisting with spontaneously
broken symmetries. Presumably symmetries such as nucleon number
conservation, ncither broken nor coupled to a massless gauge meson,
are of this sort,
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(5) All of this is very pretty, but what does it buy us? What is the practical
use of the idea of spontaneous symmetry breakdown, even by the generous
standards of practicality current among high-energy theoreticians?
The answer to this question will be given in the next section, when we leave
classical physics and turn to quantum field theory.

3 Secret renormalizability
3.1 The order of the arguments

We are going to plunge immediately into the study of spontaneous
symmetry breakdown in quantum field theory, despite the fact that we
know nothing of the properties of quantum non-Abelian gauge fields, even
in the absence of spontaneous symmetry breakdown. Logically, this is not
a good order in which to do things, but I would like to get to the heart of
the matter as soon as possible. Thus, if you have a critical disposition, you
should assume in this section that I am talking about symmetry breakdown
in the presence of at most some Abelian gauge fields, and you should ignore
my occasional remarks about the non-Abelian case. In any case, we will
quantize non-Abelian gauge fields later on.

In this section, we will first review the elements of renormalization
theory, without worrying about spontaneous symmetry breakdown.
Then we will develop a formalism for handling symmetry breakdown,
without worrying about renormalization. Finally, we will bring the two
strands of argument together.

3.2 Renormalization reviewed'®

In any non-trivial quantum field theory, divergent integrals
appear in the perturbation expansion for the Green’s functions. Renorma-
lization is a procedure for removing these divergences, order by order in
perturbation theory, by adding extra terms, called counterterms, to the
Lagrangian that defines the theory. For example, let us consider the
expansion of the proper four-point-function (ie. the off-mass-shell
scattering amplitude) in the theory defined by

1 1 ,., 4 4
g=§(5u¢)2—iﬂ¢' —a‘ﬁ- (3.1)

The first few terms in this expansion are shown in Fig. 3. All the graphs
except the first correspond to divergent Feynman integrals, If we cut off
the integrations at some large momentum, A, we obtain

= ~A+ai?ln A+A%. (3.2)

where a is a finite (i.e. cutoff-independent in the limit of large cutoff)
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Fig. 3

constant and f is a finite function of the external momenta. We now change
the theory, by adding an extra term (the counterterm) to £

2
7 ‘%m Ad*. (3.3)

The divergent term in Eq. (3.2) is now cancelled, and the Green'’s function
is rendered finite. Of course, the extra term in the Lagrangian must be
taken into account as an internal vertex when we compute to yet higher
orders, but to this order at least, everything is OK.

It turns out that the obvious generalization of this idiotically simple
manipulation gets rid of all the infinities for any field theory with poly-
nomial interactions, to any order in perturbation theory. (I ask you to
take this statement, and the ones that will follow it, on trust; they are
true, but very difficult to prove.) Furthermore, it is possible to give a general
rule for the counterterms that occur in each order of perturbation theory.
For simplicity, I will begin by giving this rule and explaining its conse-
guences for theories involving scalar (or pseudoscalar — parity conserva-
tion will not be assumed) and Dirac bispinor fields only. Let us write the
Lagrange density of our theory in the form

-g:go‘kzgis (3'4)

where Z, is the standard free Lagrange density, and each %, is a mono-
mial in the fields and their derivatives. To each of these terms, let us assign
a dimension, d;, according to the rule that the dimension of a scalar field
is one, of a Dirac field 3/2, and of a derivative operator, one. Thus, in
Eq. (3.1), the three terms have dimensions four, two, and four respectively.
(Note that we do not count dimensionful parameters, like y2, in computing
these dimensions.) Then, to any given order of perturbation theory, all
divergences can be canceled with counterterms, themsclves polynomials
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in the fields and their derivatives, whose dimensions obey the inequality
(d—4)<}, nifdi~4), (3.5)

where n; is the number of times .&; occurs in the given order,

Of course, not all counterterms allowed by the inequality (3.5) are
necessary. For example, the Lagrange density (3.1) is Lorentz invariant,
parity invariant, and invariant under the internal symmetry ¢ — —¢.
Thus, unless we are so foolish as to use a cutoff procedure which breaks
these symmetries, we need never worry about counterterms which are not
invariant under them.

Let us check (3.5) against our sample computation. For the Lagrange
density (3.1), there is only one interaction, and its dimension is four.
Thus, to O(A?), the order to which we worked, the right-hand side of the
inequality is zero, and there are only three counterterms of appropriate
dimensions and symmetry properties:

Lo +% A(0,¢)* — %— B2 — 4—11—‘ Co*, (3.6)

where A, B, and C are cutoff-dependent. We only saw the last of these in
our sample computation, but the other two are also needed in this order,
to cancel the infinities in the second order self-energy (Fig. 4).

Fig. 4

N
N—

But these are not only the only counterterms to second order, they are
the only ones to general order, because no matter how many interactions
we sum up, the right-hand side of the inequality is still zero. (The new
interactions induced by the counterterms themselves do not affect this
argument; their dimensions are also less than or equal to four.) But these
three counterterms are of the same form as the three terms in the original
Lagrangian; thus they can be thought of as simply readjustments of the
parameters in the original theory. (More precisely, the 4 term can be
absorbed in a rescaling of ¢ ; the Band C terms are then corrections to the
mass and coupling constant.)

A theory which has this property, for which all the counterterms induced
by renormalization are of the same form as terms in the original Lagran-
gian, is said to be renormalizable. Phrased another way, a renormalizable
theory is one for which all cutoff-dependence can be removed from the
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Green’s functions by rescaling the fields and choosing the parameters of
the theory in appropriate cutoff-dependent ways. Renormalizable theories
are a very small subset of the set of all quantumn field theories one can write
down. (Although they may exhaust the set of theories that make sense.)
For example, it is clear from our inequality (or from direct computation)
that any theory involving an interaction of dimension greater than four
is nonrenormalizable. However, not all theories with only interactions of
dimension four or less are renormalizable. For example, the theory of
mesons and nucleons interacting only through a Yukawa coupling,
YrysW¢, is not renormalizable, for this interaction induces a ¢* counter-
term, not present in the original theory. On the other hand, the same
theory with both Yukawa and ¢* interactions is renormalizable. (This is a
somewhat stricter definition of renormalizability than the one in common
use. Most people define renormalizable to mean that there are only a
finite number of counterterms induced, whether or not they were all present
in the original Lagrangian.)

| have said only that the counterterms are to be chosen to cancel the
infinities. This obviously leaves them undetermined, in each order, up to
finite additions. For renormalizable theories, these ambiguities are usually
resolved by a set of equations, called renormalization conditions, which
define the scales of fields and values of renormalized masses and coupling
constants in terms of Green'’s functions evaluated at some conventionally
chosen point in momentum space. Exactly how we choose these conven-
tions will not be relevant to our immediate purposes. For nonrenormaliz-
able theories, in the common sense (i.e. those with an infinite number of
counterterms), there are an infinite number of free parameters, which is
why these theories are commonly (and properly, I think) considered
disgusting. '

Until now, I have said nothing about vector fields. The rules I gave for
assigning dimensions to fields were in fact derived from the high-energy
hehavior of free propagators, as one might expect, since these are obviously
the properties that control the divergences of Feynman integrals. Thus,
although the dimension of a massive vector field is one, in the normal
sense of dimensional analysis, its propagator is

. g,uv - kukv/uz
7{2 '_7;;2 o

— (3.7)
Because of the second term, this grows at high momentum like the propa-
gator for the gradient of a scalar ficld, an object of dimension two, and our
duncnsion-counting formula, (3.5), breaks down. 1n fact, most interactions
of a massive vector field are nonrenormalizable. However, if the massive
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vector field is coupled to a conserved current, as if it were an Abelian
gauge field, then we can shuffle variables to rewrite the theory in such a
way that the propagator is
Gl ko K2
This grows just like a scalar propagator, so the dimension-counting
procedure is good again. For a true (massless) Abelian gauge field, the
theory may also be quantized in such a way that the propagator is of the
form (3.8), (with u® zero, of course). Thus, here also the dimension-counting
procedure is good, as I trust you know from your experience with quantum
electrodynamics. We shall see in Section 5 that this can also be done (with
some complications) for non-Abelian gauge fields (but here only for the
massless case).

However, even for quantum electrodynamics, dimension-counting is
not sufficient to establish renormalizability. For example, Eq. (3.5) will
certainly allow an (A,,)4 counterterm (dimension four), but if we really had
to introduce such a term into the Lagrangian, it would be a disaster — it
would destroy gauge invariance. In QED, one shows such a term can not
occur by a complicated sequence of arguments. (1) The theory is cut off
in a cunning way that does not destroy gauge invariance. (2) Gauge invari-
ance is used to establish relations between Green’s functions, Ward
identities. (3) The Ward identities are used to show that the possible
gauge-noninvariant counterterms are not necessary. The same sequence
of steps can be carried through for non-Abelian gauge theories, but the
arguments are much more complicated; I will not have time to cover them
in these lectures, and must refer you to the literature.!?

(3.8)

33 Functional methods and the effective potential®*

I would now like to put aside renormalization for the moment, and
begin a new line of development, one that will lead (after an orgy of for-
malism) to a method for treating spontaneous symmetry breakdown in
quantum field theory. For simplicity, in explaining the formalism, I will
restrict myself to the theory of a single scalar field, ¢, whose dynamics are
described by a Lagrange density, £(¢, d,¢). The generalization to more
complicated cases is trivial. Let us consider the effect of adding to the
Lagrange density a linear coupling of ¢ to an external source, J(x), a
c-number function of space and time:

L(p, 0,0)— L +J(x)p(x). (3.9)

The connected generating functional, W(J), is defined in terms of the
transition amplitude from the vacuum state in the far past to the vacuum
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state in the far future, in the presence of the source J(x),
e N=(070"),. (3.10)

We can expand W in a functional Taylor series
1
w=) I j d*x; ... d*x,G™(xy ... x (%) . .. J(x,). (3.11)

It is well known that the successive coefficients in this series are the con-
nected Green's functions; G is the sum of all connected Feynman dia-
grams with n external lines.

The classical field, ¢, is defined by

oW
¢c(x)=mc—)
=[<0+|¢(x)|0->J
©*07) | (3.12)

The effective action, I'(¢,), is defined by a functional Legendre transforma-
tion

(g)=W(J)— J d*xJ (x)(x). (3.13)
I'rom this definition, it follows directly that
oo
= —J(x). 3.14
5600 (x) (3.14)

This equation will shortly turn out to be critical in the study of spon-
tianeous breakdown of symmetry. The effective action may be expanded in
a manner similar to that of (3.11):

r=Y ElT j d*xy .o d* %, TP . LX) B(X 1) e de(x). (3.15)

It is possible to show that the successive coefficients in this series are the
IPl Green’s functions'® (sometimes called proper vertices); ['™ is the
sum of all IPI Feynman diagrams with n external lines. (An IPI (one-
particle-irreducible) Feynman diagram is a connected diagram that cannot
he disconnected by cutting a single internal line. By convention, IPI
diagrams are evaluated with no propagators on the external lines.) There
15 an alternative way to expand the effective action: Instead of expanding
in powers of ¢., we can expand in powers of momentum (about the point
where all external momenta vanish). In position space, such an expansion
looks hike

| J d*x[ - Vi) + M ZLp )+ - ). (3.16)
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V(¢.) — an ordinary function, not a functional - is called the effective
potential. By comparing the expansions (3.15) and (3.16), it is easy to see
that the nth derivative of V is the sum of all IPI graphs with n vanishing
external momenta. In tree approximation (that is to say, neglecting all
diagrams with closed loops), V is just the ordinary potential, the object
we called U in Section 2.

The usual renormalization conditions of perturbation theory can be
expressed in terms of the functions that occur in (3.15). For example, if we
define the squared mass of the meson as the value of the inverse propagator
at zero momentum, then
, 4V

d¢?
Likewise, if we define the four-point function at zero external momenta to
be the coupling constant, 4, then

H (3.17a)

0

d*v
A=—mop . (3.17b)
dqbc 0
Similarly, the standard condition for the normalization of the field becomes
Z0)=1. (3.17¢)

We are now ready to apply this apparatus to the study of spontaneous
symmetry breaking. Let us suppose our Lagrange density possesses an
internal symmetry, like the classical field theories of Section 2. Then,
spontaneous symmetry breaking occurs if the quantum field ¢ develops a
nonzero vacuum expectation value, even when the source J(x) vanishes.
From Egs. (3.12) and (3.14) this occurs if

ol

o,
for some non-zero value of ¢_. Further, since we are typically only inter-
ested in cases where the vacuum expectation value is translationally
invariant (that is to say, we are not interested in the spontaneous break-
down of momentum conservation), we can simplify this to

dv

de.
for some non-zero value of ¢,. The value of ¢, for which the minimum
occurs, which we denote by (¢), is the expectation value of ¢ in the new
(asymmetric) vacuum.

To explore the properties of the spontaneously broken theory, we define
a new quantum field with vanishing vacuum expectation value,

¢'=d—(9). (3.20)

0, (3.18)

0, (3.19)
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This generates a corresponding redefinition of the classical field,

.= — D), (3.21)

from which it immediately follows that the actual mass, coupling constant,
ctc. are computable from equations exactly like the Egs. (3.17), except
that the derivatives are evaluated at {(¢), rather than at zero. Thus, we
have recreated the entire structure of our study of spontaneous symmetry
breakdown in classical field theory. The only difference is that, instead
of working with the classical potential U, we work with the effective poten-
hal V.

34 The loop expansion
Unfortunately, except for trivial models, we do not know the
cffective potential; to calculate it requires an infinite summation of
I'eynman diagrams, a task beyond our computational abilities. Thus, it is
important to know a sensible approximation method for V. I shall now
attempt to show that one such sensible method is the loop expansion:
tirst summing all diagrams with no closed loops (tree graphs), then those
with one closed loop, etc. Of course, each stage in this expansion also
involves an infinite summation, but, as we shall see, this summation is
trivial.
Let us introduce a parameter ¢ into our Lagrange density, by defining

L, 0,0, y=a” ' L($, 0,). (3.22)

We shall now show that the loop expansion is equivalent to a power-series
cxpansion in a. Let P be the power of a associated with any graph. Then
It 15 easy to see that

P=I—V, (3.23)

where [ is the number of internal lines in the graph and V is the number of
vertices. This is because the propagator, being the inverse of the differen-
tial operator occurring in the quadratic terms in %, carries a factor of a,
whilc every vertex carries a factor of a~ . (Note that it is important that we
are dealing with IPI graphs, for which there are no propagators attached
to external lines.) On the other hand, the number of loops, L, is given by

L=l-V+l. (3.24)

Fhis 1s because the number of loops in a diagram is equal to the number of
mdependent integration momenta; every internal line contributes one
mtegration momentum, but cvery vertex contributes a é function that
reduces the number of independent momenta by one, except for one ¢
tunction that is left over for overall energy momentum conservation.
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Combining Egs. (3.23) and (3.24), we find that
P=L-1, (3.25)

the desired result.

The point of this analysis is not that the loop expansion is a good ap-
proximation scheme because « is a small parameter; indeed, a is equal to
one. (However, it is certainly no worse than ordinary perturbation theory
for small coupling constants, since the set of graphs with n loops or less
certainly includes, as a subset, all graphs of nth order or less in the coupling
constants.) The point is, rather, since the loop expansion corresponds to
expansion in a parameter that multiplies the total Lagrange density, it is
unaflected by shifts of fields, and by the redefinition of the division of the
Lagrangian into free and interacting parts associated with such shifts.'*

Thus we have a systematic expansion procedure, in any order of which
we can apply the methods of Section 2. Further, the first term in the ex-
pansion of V is the classical potential, U, the negative sum of all non-
derivative terms in the Lagrange density. Thus, we have not only justified
in the quantum world many of the classical methods of Section 2, we have
justified many of the actual computations of Section 2. They should be
reliable in the corresponding quantum field theories for the usual condi-
tions under which we expect diagrams with closed loops to be negligible,
that is to say, for small coupling constants.

3.5 A sample computation
To put some flesh on this dry formalism, let us compute the effec-
tive potential for the theory of a single scalar field with Lagrange density

¥ =40,¢)" — Ud), (3.26)

where U is a polynomial, not necessarily of renormalizable type. As stated,
in the zero loop approximation,

V=U(de). (327)
Now let us turn to the one-loop approximation. Since the one-loop
approximation does not depend on how we break the Lagrangian into
free and interacting parts, let us take only the first term in (3.26) as the free
Lagrange density, and all of U (including possible mass terms) as the
interaction. All the one-loop graphs are then shown in Fig. 5. The black
dot stands for a sum of terms with zero, one, two, etc. external lines, arising
from terms in U of second, third, fourth, etc. ordcr in ¢. (Terms linear in ¢
do not contribute to 1Pl one-loop diagrams.) Each of these external lines
carries zero external momentum and a factor of ¢, . Thus, the value of the
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vertex in Fig. 5 is

d2U
i—  =iU"(,). (3.28)
d¢)2 d=d¢c ¢

(The i is just the usual i from Dyson’s formula.) For example, if we take
the U of our old Abelian model, Eq. (2.6), then

A
U'lée)=¢ (3¢2 —a’). (3.29)
I:very line carries the usual massless propagator,
i
k? +ig’

(3.30)

where k is the momentum going around the loop. Thus, the sum of all the
graphs in Fig. 5 corrects Eq. (3.27) in the following way:

[ d*k & U(¢.)
=t j(zn)‘* L 2 (k2+1s) (3.31)
Two factors in this expression require further explanation. (1) The i in
front is just a reflection of the 1 in the definition of W, Eq. (3.10).(2) The 1/2n
i & combinatoric factor; rotating or reflecting the n-dot graph does not
tead to a new contraction in the Wick expansion, and therefore the 1/n!
i Dyson’s formula is incompletely cancelled.

It is easy to sum this infinite series. Aside from an irrelevant (divergent)
constant, the answer is

4
VU4 j(g ;‘41 (k? + U"(¢) —18), (3.32)

where 1 have rotated the integral into Euclidean space in the standard
wiy, but unconventionally have not dropped the ic. (The reason for this
cecentricity will become clear shortly.) The integral is divergent; if the
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integration is cut off at some large momentum A, we obtain

A2 U"y? U'—1e 1
V= U+327t2 U”+(64n)2 (ln Az —5), (3.33)
plus an irrelevant constant.

The distinction between renormalizable and non-renormalizable inter-
actions emerges very clearly in this computation. If U is a quartic poly-
nomial (the renormalizable case), then we can remove all the cutoff-
dependence from Eq. (3.33) by adding counterterms to the Lagrangian
which are themselves at most quartic polynomials, and which can there-
fore be interpreted as corrections to the parameters in the original
Lagrangian. For example, for our old Abelian model, we obtain in this way

2

230472

V = (02— ) o (62— 0 In(3¢2 —a® i)+ b+ e,

(3.34)

where b and c are finite constants, undetermined until we state our re-
normalization conventions, the conditions that define the renormalized
parameters of the theory, and fix the finite parts of the counterterms.'®
(Note that 1t is a good thing that we retained the 1¢, for the argument of the
logarithm can become negative, and the i¢ 1s needed to tell us the sign of
the imaginary part of V. We will return to this point later.)

On the other hand, if U is of quintic order or higher (the non-renorma-
lizable case), the counterterms we must add are of yet higher order, and
we are launched on the unending escalation of ambiguities that character-
izes non-renormalizable theories. (A technical point: as in all renormaliza-
tion schemes, the counterterms added in first order are to be considered
as quantities of first order in the relevant expansion parameter. In our
case, this is the (suppressed) loop-counting parameter, a, of Eq. (3.22).
Thus, if we go to higher loops, the counterterms introduced at this stage
are to be counted as one-loop internal parts, despite the fact that they are
represented graphically by simple point vertices.)

3.6 The most important part of this lecture

The significant feature of the computation we have just done is
that we needed to invoke no more counterterms than would have been
required if there had not been spontaneous symmetry breakdown; the
ultraviolet divergences of the theory respect the symmetry of the Lagran-
gian, even 1f the vacuum state does not. That this occurred in our specific
computation should be no surprise; our entire formalism has been con-
structed so this is what happens in any computation. For ¥, the Lagrange
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density in Eq. (3.9), is the total Lagrange density for the theory. In particu-
lar, this means that it contains all the counterterms needed to eliminate
all ultraviolet divergences. None of the subsequent manipulations in
Section 3.3 involve any integrations over internal momenta, and therefore
none of them can introduce new ultraviolet divergences.

This point is important enough to be worth stating again in a slightly
different way. We have developed the theory of spontaneous symmetry
breakdown in quantum field theory in such a way that we remove all the
ultraviolet divergences from the theory before we shift the fields. Before we
shift the fields, everything is manifestly symmetric under the full internal
symmetry group of the theory; therefore there is no way in which asym-
metric counterterms can arise.

Once more, with feeling: the divergence structure of a renormalizable
field theory is not affected by the occurrence of spontaneous symmetry
breakdown. This simple observation is the most important part of this
lecture. It is the secret of the construction of renormalizable theories of the
weak interactions. These theories are apparently non-renormalizable,
for they involve massive vector mesons (the W-bosons) coupled to non-
conserved currents. However, this is only an appearance; in actuality, the
I.agrangians of these theories involve only massless gauge fields coupled
minimally to conserved currents, and are perfectly renormalizable. The
mass of the vector mesons and the non-conservation of the currents are a
result of spontaneous symmetry breakdown.

Likewise, we see how to construct theories in which mass differences
within an isotopic multiplet are finite. We begin with a theory in which
the photon is part of a set of gauge mesons that couple in an isospin-
symmetric way. In such a theory, one needs only isosinglet mass counter-
terms. Spontaneous symmetry breakdown now occurs; the friends of the
photon become massive; but there is still no need for an isospin-breaking
mass counterterm.

At the end of Section 2, I asked, “‘What does it buy us? We now have
the wonderful answer: secret symmetry buys us secret renormalizability.

47 The physical meaning of the effective potential

In classical field theory, the ordinary potential, U(¢), is an energy
density; it is the energy per unit volume for that state in which the field
assumes the value ¢. 1 will now show that, in quantum field theory, the
cflective potential, V(¢,), is also an energy density; it is the expectation
vilue of the energy per unit volume in a certain state for which the expec-
tation value of the field is ¢..'® An immediate consequence of this is that,
0 4" has several local minima, it is only the absolute minimum that corre-
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sponds to the true ground state of the theory, the state of lowest energy.
As a byproduct, we will obtain the essential clue to the meaning of the
mysterious imaginary part of ¥ which appeared in our sample computa-
tion.

We begin the proof by expanding W(J), defined in Eq.(3.10), in the same
way we expanded I in Eq. (3.16):

W= jd“x{ — &N+ XD+ b (3.35)

Now let us consider a J(x) which has a constant value, which we denote by
J, throughout a box of side L, during a time T, and which goes to zero
smoothly outside this space-time region. Under these conditions, for very
large L and 7, the first term in Eq. (3.35) is the dominant one, and

eV =(0*|0") xe LT, (3.36)

What has happened physically is that, throughout the box, we have
smoothly changed the Hamiltonian density of the theory:

H oA —J. (3-37)

Thus we would expect the ground state of the theory, within the box, to go
adiabatically into the ground state of the theory with the additional term
in is Hamiltonian density. This state would evolve in time according to
the Schrodinger equation; since it is a ground state, this means that it
simply develops a phase. When we turn off the perturbation, the state goes
adiabatically back to the ground state of the unperturbed theory, but the
phase remains. Thus, &(J)is the energy per unit volume of the ground state
of the perturbed Hamiltonian. (Of course, level crossing might take place.
To be precise, we should say not ‘the ground state’ but ‘that stationary
state of the perturbed theory that is obtained from the ground state of the
unperturbed theory by adiabatically turning on the perturbation’.)

I will now begin an independent line of argument, which, when com-
bined with the above observation, will yield the desired result. For nota-
tional simplicity, I will construct this argument for ordinary quantum
mechanics, not for field theory, so we will speak of energies, rather than of
energy densities; the proper generalization will be obvious. Let us re-
member the ancient Rayleigh—Ritz variational problem: to construct a
state |a) that is a stationary state of the quadratic form

(a|H|a), (3.38)
under the constraint that the norm of the state be one,
(a|a) =1, (3.39)

This problem is traditionally solved by Lagrange multipliers; one intro-
duces a Lagrange multiplier, called E, and varies without constraint the
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form

(a|(H — E)|a). (3.40)
In this way one obtains

(H — E)|a)=0. (3.41)

Hence, |a) is an eigenstate of H with energy E.
Now let us consider a slight variation of this problem. We add an extra
equation of constraint

(a|A|a) = 4., (3.42)
where A is some Hermitian operator and 4, some number. We must now

introduce two Lagrange multipliers, which I will call E and J, and vary
without constraint

(a|(H —E— JA)|a). (3.43)
We thus obtain
(H — E —J A)|a) =0. (3.44)

Hence |a) is an eigenstate of the perturbed Hamiltonian, H —J 4, and E is
its energy. Of course, this gives us E as a function of J, and we are really
interested in how things depend, not on J, but on 4,. The connection
between these two quantities is easily obtained by a standard formula of
first-order perturbation theory,

dE

Ac=(aldla)=— <5 (3.45)

Hence the quantity we originally set out to make stationary is given by
dE

(a|H|a)=E+JA.=E—J iR (3.46)

It can hardly have escaped you that (with the obvious substitution of
energy densities for energies and ¢ for A) this is precisely the chain of
manipulations that led to the definition of the effective potential. Thus
we have found the physical meaning of the effective potential;

Vige)=(a|Aa), (3.47)
for a state |a) such that

5{a|#"|a) =0, (3.48)
under the constraints

(ala) =1, (3.49a)
and

(alpla) = ¢ (3.49b)

We can check this interpretation in another way, by reducing the four
dimensions of space-time to one. The L.agrange density then becomes the
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Lagrangian for a particle of unit mass, ¢ becomes x, the position of the
particle, and U(¢) becomes U(x), the potential in which the particle moves.
Eq. (3.32) becomes

1 (d
V=U+: | 2 In@?+U" —ig)
21 2n

—U+4(U" ~ig)*. (3.50)

This has a direct physical interpretation: classically, the particle sits
in a minimum of the potential, and its energy is the value of the potential
at the minimum. To get the first quantum correction to this picture, we
approximate the potential near the minimum by a harmonic oscillator
potential, and add the zero-point energy of the oscillator; this is the second
term in Eq. (3.50).17
Once we know V is an energy density, we can understand the meaning of
its imaginary part. When we follow an energy level as we change the
parameters of a theory, it may often happen that, at a certain point, the
energy level becomes unstable; at this moment the energy acquires a
negative imaginary part, equal in magnitude to half the probability of
decay per unit time, This can also be seen from our earlier discussion of
&(J) 1n terms of the adiabatic turning-on of a perturbation. If the ground
state of the unperturbed system adiabatically moves into an unstable
state of the perturbed system, it will decay, and
(07|07 ) =exp[ -1 T&(J)], (3.51)
will be a number with modulus less than one. Of course, for a system of
infinite spatial extent, one should not speak of decay probability per unit
time, any more than one speaks of energy; one speaks of decay probability
per unit time per unit volume, just as one speaks of energy density. Thus
the imaginary part of the effective potential is to be interpreted as half
a decay probability per unit time per unit volume. (Note that the i¢ in

Eq. (3.32) insures that the imaginary part is negative, as it must be if this
interpretation is to be consistent.)!®

3.8 Accidental symmetry and related phenomena

Like all perturbative expansions, the loop expansion is trust-
worthy only for small dimensionless coupling constants. For small
coupling constants, one usually expects higher terms in a perturbation
expansion to be small compared to lower terms. This is indeed the case
1n our sample computation ; for the Abelian model, for example, the zero-
loop effective potential is of order 4, and the one-loop correction is of
order A%. Nevertheless, there are important cases in which the one-loop
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corrections are more important than the tree graphs, and play the domin-
ant role in determining the structure of spontaneous symmetry breaking.

This is because our theory may contain interactions that do not appear
at all in the zero-loop approximation to the effective potential, such as
Yukawa couplings or gauge-field couplings. We have not yet explicitly
computed any graphs involving closed loops of virtual fermions or gauge
particles, but it is obvious that their magnitude depends only on the
magnitude of the Yukawa or gauge coupling constants. Since these are
independent parameters of the theory, it is always possible to choose them
so the one-loop graphs are more important than the zero-loop graphs,
c¢ven if all coupling constants are small. Thus, for example, in the Abelian
gauge model of Section 2.4, closed loops of virtual photons turn out to
make a contribution to V of order ¢*. (See the Appendix for the computa-
tion.) This is more important than the zero-loop effective potential if ¢*
is much greater than A, which can happen even if e and 4 are both much
lcss than one.

There are even cases in which the one-loop effective potential is im-
portant whatever the relative magnitude of the dimensionless coupling
constants. This is most easily explained with a specific example. Consider
an SO(3) quintuplet of scalar mesons, which we denote by ¢“, where a runs
irom 1 to 5. The transformation properties of these fields can be most
wmply expressed if we assemble them into a real traceless symmetric
\ x 3 matrix, which we denote by ¢. Under an SO(3) transformation,
vharacterized by a rotation matrix R,

¢—R¢RT. (3.52)
In addition, we will assume invariance under the discrete symmetry
¢——¢. (3.53)

Fhus we can only have quadratic and quartic self-couplings. The only
mvariant quadratic form is

Tr ¢2 =Y (¢ (3.54)

I here are apparently two possible quartic couplings, Tr ¢* and (Tr ¢2)?;
however, these are related by the tracelessness of ¢
4 1 22 I ay2 2

Tr ¢ = (Tr¢?=, | T (@9, (3.55)
As it is clear from the right-hand sides of these equations, both of these
terms are invariant under a larger symmetry group than SO(3), to wit,
SOX(S). Thus, the constraints of renormalizability (no higher than fourth-
order interactions) have forced the scalar meson self-interaction, and
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therefore the zero-loop effective potential, to be invariant under a larger
symmetry group than we started out with. This phenomenon has been
dubbed accidental symmetry by Weinberg.'® However, if the scalar
mesons are coupled to a triplet of gauge fields, the gauge interaction is not
forced to be (indeed, can not be) SO(5)-invariant; however, it also does not
appear in the zero-loop approximation for V.

Thus, if we attempted to analyze this model in the zero-loop approxima-
tion, we would be in the soup for two reasons: (1) We would have too rich
a set of vacua — an SO(5) family instead of just an SO(3) one. (2) Even if we
miraculously picked the right vacuum from this over-rich set, we would
find some massless scalars that were only SO(5) Goldstone bosons, and
not SO(3) ones. (Weinberg calls these pseudo-Goldstone bosons.) To find
the right vacuum, and to give a mass to the pseudo-Goldstone bosons, it is
necessary to compute the effects of gauge-field loops.

39 An alternative method of computation

In theselectures I have stressed a method of computation in which
we first compute higher-order corrections, and then shift the fields. To be
honest, I must tell you that most workers in this field prefer to do things
in the other order. They rewrite the Lagrangian of the theory in terms of
shifted fields

$=0'+ (). (3:56)
This gives them a Lagrangian with an extra free parameter for each spinless
field (the value of the shift). These are fixed at some stage in the computa-

tion by demanding that the vacuum expectation values of the shifted
fields vanish,

{0|¢’|0) =0. (3.57)
In other words, all IPI graphs with only one external line (tadpole graphs)
should sum to zero.

This is just as good a way of doing things as the way I have explained;
it is equivalent to computing directly the derivative of V and demanding
that it vanish, without bothering to compute V first. The only reason I
have developed the theory in the way I have is a pedagogical one; in the
alternative method of development, it is not so easy to see that spontaneous
symmetry breakdown does not lead to asymmetric counterterms. (The
only case I can think of in which our method would be clearly superior
would be for a theory in which V had two local minima; in this case, we
would need to know the value of V in order to determine which of them
was the absolute minimum, the true vacuum.)
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4 Functional integration (vulgarized)
4.1 Integration over infinite-dimensional spaces

Functional integration is a method for defining and manipulating
integrals over function spaces, that is to say, over infinite-dimensional
spaces, in the same way the ordinary integral calculus enables us to define
and manipulate integrals over finite-dimensional spaces. It is useful in
theoretical physics because it is possible to represent the generating
functional of a quantum field theory as a functional integral. Such a
representation has many virtues; from our point of view, the chief of these
is that this makes it especially easy to see how the theory changes if we
make non-linear transformations on its fundamental dynamical variables.
The larger the set of physically interesting nonlinear transformations, the
more useful is the functional-integral representation; thus it is most
useful in studying non-Abelian gauge theories. ,

This lecture will be devoted to explaining functional integration and its
connection with field theory. Our approach will be, from a mathematical
viewpoint, despicable. Nothing will be proved; everything will be done by
analogy, formal manipulation of ill-defined (and sometimes divergent)
quantities, and handwaving. I hope that this will at least give you an idea of
what is going on and teach you to manipulate functional integrals; if you
want a deeper understanding, you must go elsewhere.2°

We begin with a very simple one-dimensional integral, the Gaussian
integral,

j dx e ¥ =(2n/a)?, (4.1)

where g is a positive real number. By analytic continuation, the formula is
also true for complex a whenever the integral is defined, that is to say,
whenever a has a positive real part. Eq. (4.1) can readily be generalized
to n-dimensional space. We will call a vector in such a space, x. We will
denote the usual inner product of two such vectors, x and y, by (X, y).
Then, if A is a real symmetric positive-definite matrix,

j d"x e” ¥ A0 (2 2(det 4) (4.2)

as can easily be seen by diagonalizing 4. As before, this formula is also
true if 4 i1s a complex symmetric matrix with positive-definite real part, by
analytic continuation.

To keep from continually writing ns and ns, we define

(dx) =d"x(2n) "2 (4.3)
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Thus, Eq. (4.2) becomes
J (dx)e ™ ¥x4%) — (det 4)™ % (4.9

If we can integrate Gaussians, we can integrate exponentials of general
quadratic forms. Let

O(x) = i(x, Ax) +(b,x)+c¢ 4.5
where b is some vector and ¢ is a number. Let X be the minimum of Q,

X=—A"'h. (4.6)
Then

. - - i

Q(x)=0X)+5 (x —%, A[x—X]), (4.7)
and .

Q®)=— 3 (b, A" b+ (4.8)
Whence,

j (dx)e ™2 =~ 2x)(det 4)" %, 4.9)

Once we have Eq. (4.9), we can do the integral of any polynomial times

the exponential of a quadratic form, just by differentiating with respect to
b,

j(dx)P(x)e_Q“) =P (— ;3%) j (dx)e 2™, (4.10)

It will be convenient later to also have formulae for integrating over
an n-dimensional complex vector space, not in any contour-integral sense,
but merely in the sense of integrating separately over imaginary and real
parts. We will denote the usual Hermitian inner product in such a space by
(z*, w), and the 2n-dimensional real integration (with appropriate factors
of n inserted) by (dz*)(dz). Then if A is a positive-definite Hermitian matrix,

j (dz*)Xdz)e == 49 =(det 4)~ ", (4.11)

as can easily be seen by diagonalizing A. Note the change in the power of
the determinant. This is because each eigenvalue of 4 contributes twice
to the integral, once from the integration over the real part of z, and once
from the integration over the imaginary part. The missing 4 in the expo-
nential is just a matter of convention; its effects are absorbed in the defini-
tion of (dz*)dz). From this formula equations analogous to those we
derived before follow directly; 1 will not bother to write them out explicitly.
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Now comes the great leap of faith: there is nothing in our integration
formulae that refers explicitly to the dimension of the vector space; there-
fore we boldly extend them to infinite-dimensional vector spaces. Let me
be a bit more precise about how this is done, using Eq. (4.4) as an example.
Given a quadratic form, (x, Ax), defined by a linear operator, 4, on an
infinite-dimensional real Hilbert space, we first restrict the form to some
finite-dimensional subspace. On this finite-dimensional subspace, both
sides of Eq. (4.4), the integral and the determinant, are well-defined. We
then let the finite-dimensional subspace grow, until, in the limit, it becomes
the whole space. More precisely, we consider an increasing sequence of
finite-dimensional subspaces such that their union contains a dense set
of vectors. This limit defines both the infinite-dimensional integral and
the infinite determinant. It is a deep problem to determine for what opera-
tors A the limits exist and are independent of the sequence of subspaces,
but it 1s not one I will worry about here. We will assume in our manipula-
tions that expressions like (4.4) are well-defined whenever we need them.

The infinite-dimensional spaces we will be most concerned with will be
spaces of functions, for example, the space of functions of a single real
variable. This special case has an unnecessary, but traditional, special
notation associated with it. The vectors in the space are traditionally
denoted not by x, as we have been doing, but by some symbol that makes
their nature as functions manifest, e.g., by g(¢), where ¢ 1s the real variable.
Fhe inner product is written as

(g, 9) = J dt[q(]*. (4.12)

Also, a function from the vector space to the real or complex numbers 1s
called a functional, and derivatives, like those appearing in Eq. (4.10),
arc called variational derivatives, and denoted by expressions like
o dq(r), rather than 0/0x. In field-theoretical applications, we will consider
spitces of functions of four-dimensional space-time, usually denoted by
cxpressions like ¢(x), where x 1s a space-time point. In this case,

(¢, )= j dx[ lx)]?, (4.13)
and Eq. (4.4) would be written as
j (dop)e ¥*49 = (det 4) . (4.14)

In the cases that will most concern us, 4 will be an integral or differential
operator.



148 Secret symmetry : spontaneous symmetry breakdown, gauge fields

4.2 Functional integrals and generating functionals

There are a large number of cases in which the generating func-
tionals of quantum theories can be written as functional integrals. I will
begin with an especially simple case, that of a single scalar field with non-
derivative self-interaction. As in Section 3.3, let us write the Lagrange

density for such a theory in the presence of an external c-number source,
J(x),

£ =30,9) — 312 9* + L)+ I ()¢ (4.15)
Here %' is the interaction, some polynomial function of ¢. Let us consider

this as a classical Lagrange density for a c-number field, and let us con-
struct the classical action integral

S(p,J)= j d*x &. (4.16)

S is a functional of the two c-number fields, ¢ and J. In Section 3.3, we
also introduced the generating functional for the quantum theory,
exp[1W(J)], defined as the sum of all vacuum-to-vacuum graphs in the
presence of the source J. I will now demonstrate the following remarkable
connection between the quantum generating functional and the classical
action integral:

eiW(J)__:N j (dd’) E:iS(th), (4.17)

where N is a normalization factor, chosen such that W vanishes when J
vanishes. Eq. (4.17) is a version of Feynman’s sum over histories; a
quantum transition amplitude is obtained by summing over all possible
classical histories of the system. As it stands, Eq. (4.17)is ill-defined, even by
our sloppy standards; the integrand is an awful oscillating object, nothing
like the nicely damped Gaussians of Section 4.1. This problem is remedied
by stating that the generating functional on the left-hand side of Eq. (4.17)
is that of Euclidean Green’s functions, and the functional integral is to
be evaluated for fields in Euclidean space that vanish at infinity.

This prescription requires some explanation: Feynman amplitudes are
defined, to begin with, for real external three-momenta and real external
energies. However, we can analytically continue them to imaginary
energies, by simultaneously rotating all energies (internal as well as
external) by n/2 in the complex energy plane. It is trivial to verify that no
singularities of the Feynman integral are encountered in the course of this
rotation. (The analytic continuation can also be proved without recourse
to perturbation theory, but this is the easiest way to see that it is possible.)
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Thus we arrive at Euclidean momentum space — real three-momenta and
imaginary energies. For any Euclidean momentum k,, we define the real
variable k, by

ko=1k,. (4.18)
Thus,

k%= —ki, (4.19)
where

ki =k +k2, (4.20)
the standard Euclidean square of a vector. Also,

d*k =id%kg (4.21)

'uclidean position-space Green’s functions are defined by analytically
continuing the Fourier transforms of momentum-space Green’s functions.
So that the Fourier exponential factor, exp(ik-x), will not blow up and
spoil the continuation, we must rotate x, through minus #/2 at the same
lime we rotate k, through plus #/2. Thus we obtain

Xo™— — i)C4, (4.22)
d*x= —id*xg, (4.23)

¢te. Thus, for example, the Feynman propagator for a free scalar field of
mass g,

&k i
_ e ___ 1 4.24
Arx) j(Zn)“e K—pitie (4.24)

hecomes, in Euclidean space,

Ag(x)=

e S i (4.25)

Note that there is no need to retain the ie in Euclidean space. It will be
important to us shortly that this function obeys

(— O + pH)Ap(0) =8"(x), (4.26)
where
CE=V?%+03i 4.27)
Smee the integrand in Eq. (4.25) has no pole, Ag is the unique solution to
I . (4.26); this is in contrast to the situation in Minkowski space, where
the corresponding equation has many solutions, and the i¢ is needed to
resolve the ambiguity.
l.et us now turn to the verification of the functional-integral formula,
P . (4.17). I will begin with the case of a free field, £’ =0. The Minkowski-
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space generating functional is

: 1
eV =exp |: D) J d*xd*y J(x)AR(x — y)J( y)]. 4.28)
Hence, the Euclidean generating functional is
1
exp [5 j d*xpd*yeJO)AE(Xx— y)J ( y)]- (4.29)

This takes care of the left-hand side of Eq. (4.17). As for the right-hand side,

iS=i j d*x (% [God) ~(Vé) —u*¢?] +J¢)

= j d*xg (% [(04¢)* +(V¢)? +u2¢2]—1¢>)- (4.30)

(I emphasize that this is not an analytic continuation, just a formal sub-
stitution. We are not proving that one well-defined object is an analytic
continuation of another; we are defining the functional integrand.) Thus
the functional integral is of the form (4.9), with

A=—[g+p? b=—J,c=0. (4.31)
Hence,

N j (do)eiS = N(det A)~te 247D, 4.32)

We can now determine the normalization factor, N,
N =(det 4)%. 4.33)

This saves us the trouble of computing the determinant. (This is a good
thing, because, in cold fact, the determinant is divergent.) Thus we obtain
our final answer for the integral,

exp B (J, A7 )] =exp B j d*xgd*ypJ (x)Ag(x — y)J (y)]-
(4.34)

This is in agreement with Eq. (4.29); in this case, at least, the functional
integral has reproduced the generating functional, as promised.

If we had attempted to evaluate the integral directly in Minkowski
space, using (erroneously) the integral formulae of Section 4.1, we would
have arrived at a similar result, except that 4 would have been the Klein—
Gordon operator. We would then have been stymied, for we would not
have known what Green’s function to use for 4. The Euclidean calcula-
tion contains no such ambiguity; the right answer (Feynman's ic rule)
comes about automatically as a consequence of our prescription for con-
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tinuing back into Minkowski space, after we have done the integration.
Thus, Euclidean integration is not just a mathematical nicety, but is
essential if we are to obtain an unambiguous answer. From now on, I
will not explicitly do the continuations into Euclidean space and out again,
but simply write my integrals as if they were to be done in Minkowski
space, as in Eq. (4.17). You should always remember, though, that this is
just a notational convention; really we are always integrating over
Euclidean fields.

Now for the interacting case. Still being slapdash, I will ignore all
questions of divergences, cutoffs, and renormalizations, and simply write
down Dyson’s formula for the generating functional:

0>, (4.35)

where |0) is the bare vacuum, ¢ is the interaction-picture field, T is the
time-ordering symbol, and N’ is a normalization factor, chosen as before.

This can be written as
exp |:i j Jqf).d4xj| 0>

, . S .0
N’ exp |:1 Jd"yff (——1 5J(y))]<0

=N’ exp I:i j dy ¥’ (——i 5J(S(y))j| exp[iW,(J)], (4.36)

where W, is the generating functional for the free field. Now for the
functional integral. We split the action into two parts,

S j d*x L)+ Solb. I, 437)

where S, is the action for the free field (including the source term), the
(uantity denoted by S in Eq. (4.27). In the spirit of Eq. (4.11),

iS_ _‘ N - 5 | iSo
N I (dp)e'® =N exp —1 Jd“yﬁf ( léJ(y))_ j(dq&)e

=Nexp|i J d4y£€’(-—i ) etWo, (4.38)

eW=NT <0

exp [i j (L () +J dn)d"X]

oJ(y)

hy our preceding evaluation. Things equal to the same thing are equal to
cach other. Q.E.D.

This result generalizes immediately to a theory involving several
scalar fields

P =40, N* ") — U +J (x)¢", (4.39)

where U depends on the fields but not their derivatives, and the sum on
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repeated indices is implied. In this case, Eq. (4.17) becomes
e =N jﬂ (dp*)e's. (4.40)

Likewise, descending from four dimensions to one, we see that for the
parallel system in particle mechanics,

L=3(¢")* - U(g")+J(0)q", (4.41)
a similar formula applies,
" =N j 11 (dg"e®. (4.42)

Of course, in this case, the action is just a single integral, not a quadruple
one,

S— j dl. 4.43)

We can also go backwards, from ‘particles’ to fields, by letting the index
a run over an infinite range, and identifying the gs with the Fourier
components of the fields at fixed time. Thus, Eq. (4.42) is in fact more
general than Eq. (4.40); it involves no conditions on the Lorentz trans-
formation properties of the dynamical variables, merely a condition on the
way in which their time derivatives enter the Lagrangian. For this reason,
I will in the future use ‘particle’ language when the discussion is general,
and return to field language only for special cases.

4.3 Feynman rules

Let us return for a moment to the case of a single scalar field with
non-derivative interactions. Eq. (4.38) gives a formal expression for the
functional integral in this case, but, if the interaction is non-trivial, it is
impossible to turn this into an explicit closed form. However, it is perfectly
feasible to evaluate it perturbatively, by expanding in powers of the inter-
action. Such an expansion gives the ordinary Feynman rules.

This can be seen most easily with the aid of a functional identity. I
will first state and prove this identity for finite-dimensional real vector
spaces, and then, as usual, extend it to function spaces. Let F(x) and G(x)
be any two numerical-valued functions on a vector space; then

. 0 . 0 iy
F("—lé‘;) G(X):G(—lé';) F(y)e( )ly=0. (4.44)

The identity is most easily proved by Fourier analysis, that is to say, by
taking F and G to be plane waves,

F =ei(|.x)‘ G= ei(b.x)‘ (4‘45)
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with a and b fixed vectors. Then
e(a,a,’@x)ei(b,x) __:ei(b,x+a)' (446)

and
e(b,a/ay) el'(x+a,y)=ei(x+a,y +b)‘ (4‘47)

This proves Eq. (4.44).
Extending this to a function space, and applying it to Eq. (4.38), we
obtain

iw_ _1 4, 44 _ 4 4
e =N exp szd yd*x Aelx—y 56(%) #m—éé(y):l
X exp I:i d*x (L' (Pp)+J (b):l (4.48)
J =0

Here I have made the obvious substitutions of J for x, ¢ for y, and varia-
tional derivative for ordinary derivative. Eq. (4.48) is manifestly the
Feynman rules for the vacuum-to-vacuum matrix element. (If it is not
manifest to you, I suggest that you compute the first few terms in the
expansion for a ¢* interaction.) Note that diagrams occur in the expan-
sion in which two fields from the same interaction vertex are linked by a
propagator; the functional integral does not normal-order the interaction
for us. If we wish to treat normal-ordered interactions, we must do the
normal-ordering by hand, by inserting explicit counterterms into the
interaction.

This argument can immediately be extended to the general case, to give
‘Feynman rules’ for perturbatively evaluating a functional integral of the
form

j [T(dg)eS, (4.49)
where

S=8+5, (4.50)
and

So=—13(g" Auq"). (4.51)

Here A is a linear operator (independent of the gs) with positive-definite
rcal part (after the rotation to imaginary time has been performed), and
N'is an arbitrary polynomial functional of the gs, possibly involving source
terms. Then, just as above, we can develop a diagrammatic expansion for
the integral in powers of §’, exactly like Feynman rules. Every power of §’
is represented by a vertex, and the propagator, D#(t, t'), is the solution of

ApDE(1, 1)Y= — 18551 —1'). (4.52)
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Any ambiguity in solving this equation is to be resolved by rotating to
imaginary time.

Note that if §" contains derivatives of the gs, these will just become
derivatives of propagators in the expansion. The familiar problem of
pushing time derivatives of quantum fields through a time-ordering
operator, the problem that makes perturbation theory for derivative
interactions such a combinatoric nightmare, has no counterpart here, for
we have no time-ordering operator and no quantum fields, just an integral
over c-number fields.

Thus, for any theory, if we can write the generating functional in the
form (4.49), we can just read off the Feynman rules from §' in the most
naive way, replacing every derivative of a field with a momentum factor,
etc., without making any mistakes. Unfortunately, at the moment, the only
theories for which we can write the generating functional in the form (4.49)
are those without any derivatives in the interaction, so this observation
is without immediate use. However, it will become very useful shortly.

44 Derivative interactions

There is a large class of theories with derivative interactions for
which it is possible to write a functional-integral representation of the
generating functional. These are theories where the Lagrangian is no more
than quadratic in time derivatives,

L=3¢"K 4"+ L,4"~ U, (4.53)

where K, L, and U are functions of the gs. The only restriction I will place
on these functions is that K be invertible, so that the equation for the
canonical momenta,

Pe= Kabqb + La 3 (454)
can be solved for the ¢s and the Hamiltonian constructed,

H=3p K™ ")"py+ -, (4.55)

where the triplet dots indicate terms of first and zeroth order in the ps.
For these theories, the appropriate generalization of our earlier result,
Eq. (4.42), turns out to be

¢% =N j TT (dg)[det K]*e's. (4.56)

In this equation, K is to be interpreted as a linear operator on the function
space, and the integral is to be interpreted in the same way our earlier
(Gaussian) integrals were interpreted. Everything is to be restricted to a
finite-dimensional subspace, the integral is to be done over that subspace,
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and the limit is to be taken. I do not know of any short argument for this
formula, and have to refer you to the literature for a proof.2! However, 1
can try and make it plausible to you by showing that it obeys some simple
consistency checks. (1) If K is independent of the gs, and L vanishes, this
reduces to the previous case. The determinant can then be pulled out of the
integral and absorbed by the normalization factor, reproducing Eq. (4.42).
(2) If K 1s independent of the gs, but L does not vanish, then, by our earlier
remarks, the Feynman rules are the naive ones, with the derivative in the
interaction becoming a factor of momentum at the vertex. This may be a
familiar result to you if you have ever gone through the derivation of the
Feynman rules for ps-pv meson—nucleon theory, or the electrodynamics of
charged scalar bosons. (3) If K does depend on the gs, things are not so
simple. This may be familiar to you if you followed the discussion in the
literature a few years ago about the Feynman rules for chiral Lagrangians.

(4) Finally, a Lagrangian of the form (4.48) becomes one of the same form
if we change coordinates. To be more precise, let us trade the gs for new
variables, which we denote by g°. Then

L=3¢'Kad’+ - =33Ka’+ -, (4.57)
where
_ aqd aqd
K, ,=— . 4.58
ab aq-a cd aé-b ( )

This takes care of the transformation of the Lagrangian, but we still have
to change variables in the functional integral. As always, we will figure
out how to do this by going back to the finite-dimensional case. Suppose,
m a finite dimensional space, we change from coordinates x to coordinates
X, Even though X may be a non-linear function of x, 0x/0X is a linear
operator (an n x n matrix, where »n is the dimension of the space), and has a
determinant. The change-of-variables formula is the familiar Jacobian
formula,

(dx) =(dX) det (0x/0x). (4.59)

As always, we simply extend this to the infinite-dimensional case, obtaining
[det K]* [] (dg")=[det K]* [] (dg?)det(dq/0q)

=[1 (dg*)[det K1*. (4.60)

I'hus, Eq. (4.56) is independent of our choice of coordinates.

I:q. (4.56) is sometimes written in ‘Hamiltonian form’ 22

¢ =N j [T (dp"Xdg.)e™, (4.61)
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where S is, as usual, the integral of the Lagrangian, but the Lagrangian
is written as a function of the ps and gs, considered as independent vari-
ables,

L=p°,—H. (4.62)
Formally, it is easy to see that this is equivalent to our earlier formula,
by explicitly doing the integral over the ps. This is an integral of the expo-
nential of a quadratic form, so it can be done with Eq. (4.9). We see that
we get a determinant in front, just the one we need. In addition, in the
exponential, the ps are replaced by their values at the point where S is
stationary with respect to variations of the ps. This means that we must
solve the equations

oH
8 _ 4.63
1 OPa (4.63)

But this just reverses the standard passage from the Lagrangian to the
Hamiltonian, and recreates the Lagrangian in its original form, as a
function of the gs and ¢s.

The Hamiltonian form of the functional integral must be taken with a
grain of salt. Unlike the Lagrangian form, the derivative terms do not
become nicely damped exponentials when we rotate to imaginary time;
they stay oscillating. Thus the Hamiltonian integral is much less well-
defined than the Lagrangian one. Indeed, one can show that not even the
most ingenious mathematician can make it well-defined; it is possible to
find examples for which the value one assigns to (4.61) depends on whether
one integrates first over the ps or first over the gs. (A simple one is H = p?
+ g+ Ap*q?; the differences arise in perturbation theory in order i%)
However, there is nothing wrong with (4.61) as long as you remember that
always attached to it is the rule: first integrate over the ps formally, then
rotate to imaginary times.

4.5 Fermi fields

Everything we have done until now has been for Bose fields. What
about Fermi fields? For Bose fields, we found that the generating func-
tional could be represented as an integral over ordinary c-number fields,
the classical limits of Bose fields. By analogy, we would expect that the
generating functional for a theory involving Fermi fields could be written
as an integral over the classical limits of Fermi fields, anticommuting c-
number fields. Anticommuting c-numbers are notoriously objects that
make strong men quail; fortunately, we will be able to circumvent the
problem of defining functional integrals involving them.
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Suppose we were able to define a functional integral over Fermi
fields. What sort of integrals would we want to evaluate? In any theory
we are interested in, the Fermi fields enter the Lagrangian at most quadra-
tically. Thus, if we denote the Fermi field(s) by n and the conjugate field(s)
by #*, the part of the action involving Fermions is of the form

Sc=(n*, An). (4.64)
Here A is typically the sum of two terms: a constant term, from the free
fermion Lagrangian, and a term involving Bose fields, from the couplings
to spinless mesons and/or gauge fields. For the moment, let us consider
S¢ to be the total action, and the Bose fields referred to above as external
fields. (We can always integrate over them later; we know how to integrate
over Bose fields.) If we were able to define a functional integral over Fermi
fields, we would like to prove that

(0|07 )=e" =N j (dy*)(dn)e'™. (4.65)

Now let us consider the identical integral with n a complex Bose field.
In this case, we know how to do the functional integral, by Eq. (4.11),

j (drp*)(dn)e™™ 4 = [det(i4)] . (4.66)

We also know how to directly evaluate W, by perturbation theory. W is
the sum of all connected Feynman graphs. For an action of the form (4.64),
these are just single-closed-loop graphs, like those drawn in Fig. 5 (except
that here the lines should have arrows on them, because the field is
complex). What happens to the perturbation expansion if we replace
hosons by fermions? The only difference is that there is a factor of minus
one for every closed Fermi loop. Every graph that contributes to W has
one and only one closed loop; therefore, W is replaced by minus W, or,
cquivalently, the inverse determinant in Eq. (4.66) is replaced by the
determinant.
Thus, we would get the right answer if

j (dn*)(dn)ei™4m = det(i4), (4.67)

up to a constant factor, which we can always absorb in the normalization
vonstant, N. Therefore, we define the left-hand side of this equation to be
cqual to the right-hand side. This is a poor substitute for a deep theory of
integration over anticommuting c-numbers, but it does give up a compact
cxpression (the determinant) for a sum over Fermi closed loops, and it will
turn out that this is all we will need for our purposes.
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4.6 Ghost fields

We left the theory of derivative interactions in poor shape. It is
true that we had an expression for the generating functional, Eq. (4.56),
but it was not in the form of an integral of an exponential; there was a
determinant sitting in front. Therefore, we could not use Eq. (4.56) to
develop a diagrammatic perturbation expansion of the integral. We can
now use our knowledge of Fermi fields to get the determinant up into the
exponential. For, if we introduce a set of complex Fermi variables, #°
and denote by K* the matrix square-root of K, then

[det K]*=j (dr*)dm)e™ <, (4.68)

up to a multiplicative constant, which can always be absorbed in the
normalization factor, N. The #s are called ghost variables (in the field-
theory case, ghost fields). They are not true dynamical variables of the
system, simply devices for getting a determinant up into an exponential.

Thus, the Feynman rules for the theory can be read off from an ‘effective
Lagrangian’,

Lg=L+L,, (4.69)
where L, the ghost Lagrangian, is given by
L,=n*Kxn". (4.70)

It is instructive to work out in detail a field-theoretic example. Let us
consider the theory of a free field coupled to an external source,

L =43,0) — 4127+ . @.71)
Let us make a change of variables to a new field, 4, defined by
dp=A+1gA> (4.72)

where g is a constant. (This transformation is not invertible, but that
shouldn’t worry us; we’re only going to do perturbation theory, and (4.72)
1s invertible near ¢ =0.) In terms of A, the Lagrange density is given by

& =$0,4)*(1 +gAy — 52 AX1 + 39 A)* + JA(1 + 39 A). (4.73)

Thus we apparently have a very complicated interaction, with g some sort
of coupling constant. Of course, this interaction is just an illusion; the
vacuum-to-vacuum matrix element must be the same as in our original
theory. However, this is not the answer you will get if you just read the
Feynman rules naively out of (4.73). The right Feynman rules are obtained
from an effective Lagrange density

SLag=L+2,. (4.74)
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where
&L =n*n(l1 +gA). (4.75)
T'he unphysical nature of the ghost fields is doubly clear from this expres-
sion. (1) The ghost fields are spinless fields obeying Fermi statistics. (2)
I'he ghost propagator has no momentum dependence; it is a constant, i.
1 recommend that you compute a few things to low orders of perturba-
tion theory, using this effective Lagrange density, to convince yourself
that everything works out as it should. A good starting point is the one-
point function (tadpole) to order g. This should vanish. Does it?

s The Feynman rules for gauge field theories
S 1 Troubles with gauge invariance

The quantization of gauge field theories is notoriously tricky. We
van get an idea of the problem if we look at the simplest gauge-invariant
hield theory, electromagnetism.

¥ =—-%3,4,-0,A )+ (5.1)
I ctustry and derive the Feynman propagators for 4, by straightforwardly
applying the methods of Section 4, without worrying about whether
clectromagnetism is in fact in the class of theories we discussed there. The
«omputation is simplified by splitting the field into (four-dimensional)
transverse and longitudinal parts

A=A+ AL

=(P.,+P;)A". (5.2)

where the Ps are the transverse and longitudinal projection operators; in
I ourier space they are given by

PL,=g,,—k.k,/k* Pk =kk,/k*. (5.3)
tRemember, we are secretly doing all our computations in Euclidean space,
- there is no ambiguity in dividing by k%) Then it is easy to see that

S= j d*x[4(0,47)* + £'7. (5.4)

W ¢ obtain the propagators for the transverse and longitudinal parts of the
tield by our standard formulae; thus

. k.k, i k.k, {i

Fhe second term is obviously unaceeptable: something has gone wrong,
Ihis debacle can be explained in two ways, cither from Feynman’s sum
et hustories or from conventional canonical quantization. (1) Sum-over-
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histories explanation: Feynman says that to compute a transition ampli-
tude you must sum over all possible histories of the system. This is normally
what the functional integral does for us. However, in a gauge theory,
summing over all gauge fields, 4,(x), sums over each history an infinite
number of times, because fields that are connected by a gauge transforma-
tion do not represent different histories but a single history. No wonder
we got divergent nonsense! (2) Canonical explanation: To canonically
quantize a dynamical system, you have to find a set of initial-value vari-
ables, ps and gs, which are complete, in the sense that their values at
time zero determine the values of the dynamical variables at all times. It
is only in this case that the imposition of canonical commutators at time
zero will determine commutators at all times and define a quantum theory.
In a gauge theory, this can never be done, because you can always make a
gauge transformation that vanishes at time zero but does not vanish at
some other time; thus you can never find a complete set of initial-value
variables. To quantize a gauge theory, you must first pick a gauge, impose
some condition that eliminates the freedom to make gauge transforma-
tions. Then, if you are clever and/or lucky in your choice of gauge, you may
be able to canonically quantize the theory. Of course, physical quantities
are gauge-invariant, and therefore should not depend on what gauge you
pick for quantization, but this always has to be proved explicitly in every
particular case. We worried about none of this; no wonder we get divergent
nonsense!

Both of these explanations emphasize gauge invariance as the critical
feature. I personally prefer the second to the first; the injunction to sum
over histories seems to me to be incomplete, for it does not tell us what
measure to use when the sum is continuous, and, as we saw in our study
of derivative interactions, this is not a trivial question. However, in the
first part of our investigation, 1 will accept a quantization method in-
vented by Fadeev and Popov, which is inspired by the first viewpoint.
Later on, I will justify the Faddeev-Popov method by appealing to canoni-
cal quantization. (Please do not think I am being original in this last step;
I learned the canonical justification from Faddeev.)

5.2 The Faddeev—Popov Ansatz

As usual, I will begin by discussing finite-dimensional integrals
and later extend the results to function spaces. Our model of the function
space of a gauge field theory will be a space of n+ m real variables, which
we denote collectively by z. We will also denote the first n of these variables
by x, and the last m by y. The xs will be our finite-dimensional model of
the gauge-independent variables (in clectrodynamics, 4)) and the ys of
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the gauge-dependent variables (AL, in electrodynamics). We will also
have a model of a gauge-invariant action, a function S(z), which is inde-
pendent of the y-variables,

oS

dy
We wish to define a (finite-dimensional model of the) generating functional
that avoids the divergence problems we would encounter if we integrated
over all the zs. This is easy; we just integrate over the xs only, and define

el = j (dx)e'S. (5.7)

(We suppress the normalization factor for the moment.) This can also be
written as

e = J (d2)e™6( y). (5.8)

0. (5.6)

Here 6( y) 1s an m-dimensional é-function, normalized such that

J g(y)(dy)d(y)=g(0), (5.9)

for any function g. Eq. (5.8) says that we integrate along the surface y =0.
Of course, since nothing depends on the ys, we could just as well integrate
along an arbitrary surface, defined by

y=f(x), (5.10)
where f is an m-vector, a set of m functions of the xs. We then obtain
el = J (d2)eSd(y — f(x)). (5.11)

We may not be given the surface in the form (5.10), but as the solution to
some set of equations,

F(z)=0, (5.12)

where F is again an m-vector, a set of m functions- of the zs. It is easy to
rewrite the integral in a form appropriate to this description of the surface,

e’ = J (dz)e' det(BF/ay)d(F(2)) - (5.13)

Nolte that, because of the presence of the d-function, we need only evaluate
the determinant on the surface. 1 emphasize that Eq. (5.13) defines the
sume expression as Eq. (5.7), and is completely independent of our choice
ol the functions F.

1 will now state the Faddeev Popov?* quantization procedure. Let S be
the action integral for a theory involving m fields, ¢“(x) (not necessarily
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all scalar). Let S be invariant under some group of gauge transformations,
parametrized by a set of n real functions, w%(x). For such a theory, a
‘gauge’ 1s defined to be a set of n equations

F(x)=0. (5.14)
where the Fs are functions of the ¢s, possibly differential or even non-local,
such that, given any ¢“(x), there is one and only one gauge transformation
that makes Eq. (5.14) true. For electrodynamics, an example of a gauge
is radiation gauge, V-A =0. Another example is Lorentz gauge, d, 4*=0.
(You may object that in this case the gauge transformation is not unique.
This is true in Minkowski space, but remember that we are always secretly
working in Euclidean space.) According to Fadeev and Popov, the theory
1s now quantized by declaring that

e¥=N j [T (dé)e® det (an) 1T 8(F®). (5.15)
a aCU b

where F*=0 is some gauge. This 1s the functional analogue of Eq. (5.13).
The é-function in Eq. (5.15) is a 6-function on function space, a é-functional
if you will; it obeys the equation

j (dP)G()o(p) =G(0), (5.16)

for any functional G. We will call Eq. (5.15) the Fadeev- Popov Ansatz.

Remarks. (1) The choice of gauge in the Faddeev-Popov Ansatz is equiv-
alent to the choice of surface in the finite-dimensional integral we dis-
cussed earlier. Thus, whether the Ansatz is true or false, it is at least
self-consistent; it is independent of the choice of gauge. (2) Thus, to verify
the Ansatz, it suffices to verify it for just one gauge. If it is true in one gauge,
it is true in any other. (3) The gauge-independence of the Ansatz depends
on the action being gauge-independent. Thus, the action can not contain
source terms coupled linearly to the gauge fields. However, it can contain
source terms coupled to gauge-invariant objects, like (F§,)?, for example.
Phrased in another way, the Ansatz only gives us gauge-invariant expres-
sions for gauge-invariant Green’s functions. Since the standard wisdom
is that in a gauge theory only gauge-invariant quantities are physical
observables. this is no great restriction. Also, once we have settled down in
some fixed gauge, there is no objection to computing non-gauge-invariant
objects, like gauge-field propagators, as a preliminary step in the compu-
tation of gauge-invariant objects. (4) | remind you that everything we are
doing is on a purely formal level; we are ignoring complications that may
arise as a result of ultraviolet divergences. Therefore, everything we do
should be taken as merely heuristic, to be checked later by more careful
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analysis. The manipulation of functional integrals is more efficient than
other formal methods of treating gauge theories, but it is no more rigorous.

53 The application of the Ansatz

We will begin with the simplest gauge theory, electrodynamics.
Since gauge transformations for this theory are parametrized by only a
single function, only one equation is needed to determine a gauge. We will
choose a slight generalization of the Lorentz gauge,

F=0"4,— f(x), (5.17
where f(x) is an arbitrary function. Under an infinitesimal gauge trans-
formation, Eq. (2.28),

OF= —e ' [Péw. (5.18)
Thus,
det(0F/6w)=det(— e~ 1 ). (5.19)

This is a constant and can be brought outside the integral and absorbed in
the normalization. Thus we obtain

e =N J (dA)dy)e'S6(8" 4, — f(x)) (5.20)

where, to simplify notation, I have indicated by (d4) the integrals over all
four components of the gauge fields, and by (dyr) the integrals over all
other fields in the theory.

We still do not have the integral of an exponential, so it is hard to evalu-
ate Eq. (5.20) perturbatively. This is easily rectified. Since the integral is
mdependent of the function f, we can integrate it with any functional of
1. G( f), without changing the integral (except perhaps for a normalization,
which can always be absorbed in N). Thus,

=N J (dAXdy)(d/f)e5(d" 4, — )G(f)

=N j (dA)dy)eSG(d* 4,) (5.21)
In particular, if we choose

G(.f')=e‘il':I I (5.22)

where o is some real number, we find
_ il.s‘-- 2 J‘d‘:(nu“)l}
e =N | (dAXdy)e (5.23)

Phus the outcome of our application of the Ansatz is to replace the
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Lagrange density of the theory by an effective Lagrange density
1
Lag=L— —(0"4,) (5.24)
20
From this it is easy to compute the electromagnetic propagator, since
j d*x(0*4,)* = j d*x(o#4%)2. (5.25)
Hence, the preposterous Eq. (5.5) is replaced by
—i kk, kk,
D,uv:_kmz_lig,uv— i?""a _E’(T] (5.26)

Any one of these propagators should give the same results as any other in
the computation of gauge-invariant objects. (I hope you know enough
about electrodynamics from other sources to recognize this as a true
statement.) The choice a=1 yields what is usually called the Feynman-
gauge propagator, « = 0 the Landau-gauge propagator, etc. For any choice
of a, the propagator has the same high-energy behaviour as that of a scalar
field, and therefore the dimension-counting formulae of Section 3.1 are
applicable in computing counterterms.

Now let us turn to non-Abelian gauge fields. For notational simplicity,
we will restrict ourselves to the case where there is only one gauge-field
coupling constant. We determine a gauge as in Eq. (5.17),

Fe=0"A5— f°, (5.27)
where the fs are arbitrary functions. Under an infinitesimal gauge trans-
formation, (2.44),

OF' =g~ '[ — (120w + g d*(dwP AS)]. (5.28)
In contrast to the Abelian case, here the determinant is not a constant.

However, just as in Section 4.6, we can write it as an integral over a set of
ghost fields, scalar fields obeying Fermi statistics,

OF*° .
det ( ,,) - j (dr*)Ydm)e'Ss , (5.29)
ow
where
S,= j d*x & = j. d*x(0,n*)@"n® — g™ nP AS). (5.30)

and we have chosen to absorb an overall factor of det g~ ! into N. The
ghost Lagrange density can be written in a compact way if we consider the
ghosts as a set of fields that transform according to the adjoint representa-
tion of the group,

L=0n* D"’ (5.31}
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In this form 1t is clear that Z, is not gauge-invariant; of course, there is
no reason why it should be, since it is derived from the (purposefully)
non-gauge-invariant Eq. (5.27). In contrast to the example of Section 4.6,
here the ghosts have a momentum-dependent propagator, that of a set of
massless charged scalar fields, i5*°/k%. However, they still reveal their
unphysical nature by being spinless particles obeying Fermi statistics.

The remainder of the development of the non-Abelian case is exactly
the same as that of the Abelian case. Thus we arrive at the effective
| agrange density

1
La=2+Ly— 5 (O A). (5.32)

where o is an arbitrary real number. Note that if & is the Lagrange density
tor a renormalizable field theory minimally coupled to gauge fields, every
term in this expression is an interaction of renormalizable type (dimension
less than or equal to four). As I explained at the end of Section 3.1, this
ahservation is just the first step in establishing renormalizability, but it is
4 fur as we will have time to go here.

N Justification of the Ansatz
I will now justify the Faddeev-Popov Ansatz by showing that,ina
particular gauge, it is equivalent to canonical quantization. The gauge is
\inowitt-Fickler?* gauge (sometimes called axial gauge); it is defined by
F*=A5%=0. (5.33)
where the 3 indicates the third spatial component. Unlike Eq. (5.27), this
. not Lorentz-covariant, so this is a terrible gauge for performing Feynman
.alculations; however, this is not our purpose. For simplicity, I will
. anstruct the proof for pure Yang—Mills fields, uncoupled to other fields;
I he generalization is straightforward.
I'irst we must construct the Faddeev-—Popov Ansatz:
SF = — g~ 1838w+ ¢’ A5
= —g~ '0;00" (5.34)
I he second line follows from Eq. (5.33). Thus, the determinant is a con-
tant, and can be absorbed in the normalization factor; in this gauge,
there are no ghosts, even in the non-Abelian case. Thus, the Ansatz becomes

e =N J (dA)e™ [T 8(A9), (5.35)
where (dA) indicates integration over all the As. More explicitly,

(dA) | | 84D =] ] (dAINdAIXdAL). (5.36)
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I remind you that

1
S=-3 j d*x(9,A4%— 8,4% + gc™ AL A%)?, (5.37)

plus source terms, which I shall not bother to write explicitly.

(This is off the main line of the argument, but it is a point that may have
been worrying you: the ghosts are fictitious particles, but they do have real
poles in their propagators. Therefore, it seems that states involving ghosts
might contribute to the absorptive parts of gauge-invariant Green’s
functions. This would be disturbing if it happened; fortunately, the exist-
ence of a ghost-free gauge shows that it does not.)

It will be convenient to rewrite the Ansatz in so-called first-order form,

e’ = j (dFXdA) [] 8(4%)e™, (5.38)
where ‘
S'= j d4x[ - H(Fa, P +4F*%0,A5 — 0,42+ gc™ A% A%)], (5.39)

and (dF) denotes integration over all the Fs. The integral over the Fs is
trivial and obviously reproduces Eq. (5.35). S’ is also equivalent to S in
the normal sense of Lagrangian dynamics; if we vary " with respect to the
Fs and As independently, we get the same equations of motion we obtain
by varying S with respect to the As alone. That §’ is a good action in both
these senses 1s no coincidence; it is a consequence of the integration
formula (4.9). If a dynamical variable appears in the action at most quad-
ratically, and if the coefficient of the quadratic term is a constant, then
integrating over the variable is the same as eliminating it from the action
by using the Fuler-Lagrange equations.

So much for the Ansatz; now let us turn to canonical quantization.
Again, we will use S’, the first-order action, and work in Arnowitt-
Fickler gauge, setting A4 equal to zero. Let us write Eq. (5.39) in such a way
that the dependence on various tensor components is explicit:

L' = —JFo )+ 5F 790,45 — 0,4% + gc™ A A9

+ FO%(00 A7 — ;4% + gc** A3 A5)

+ FO3(—0349) + F2%(— 03 47). (5.40)
where i and j run over the range 1, 2. Note the drastic simplification of the
last two terms, caused by the gauge condition. We now see that canonical
quantization of (5.40) is like shooting fish in a barrel: A%, FY¢ F°3

F'3% are constrained variables: their Euler Lagrange equations involve
no time derivatives and are, therefore, not true equations of motion but
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cquations of constraint, fixing the constrained variables on the initial-
value surface in terms of the remaining variables, A{ and F%*°,

Let us denote the action obtained by eliminating the constrained vari-
ables by S”; it is a functional only of A7 and F°“. Furthermore, it is in
lamiltonian form, with the As the canonical fields and the Fs the conju-
gate momentum densities. Thus, we can use Eq. (4.61) to write

e =N J [](dF°* o) (dF°29)(dA%)dA%)e!S". (5.41)

However, because the constrained variables enter Eq. (5.40) at most
(uadratically, and because the coefficients of the quadratic terms are
constants, we can equally well write this as

e =N j (dF) [T (dA§Nd A5)dA5)e™

=N j (dF)dA) [ 8(4%)e"’ (5.42)

But this is the Faddeev-Popov Ansatz, Eq. (5.38). Q.E.D.

55 Concluding remarks

(1) The chain of arguments we have just constructed shows both
the power and the limitations of functional-integral methods, Functional
mtiegration is a supplement to canonical quantization, not a replacement
lor it. For example, when writing down the Ansatz, I could well have
multiplied the integrand by some function of (F4,). This would have been
just as gauge-invariant, and just as plausible a priori as the original Ansatz.
I would have been wrong, but there would be no way to tell this without
appealing to canonical quantization. On the other hand, once we have
mstified the Ansatz by canonical quantization, we can use it to pass from
one gauge to another with incomparable ease. In particular, we can use it
to pass from a gauge in which canonical quantization is simple to a gauge
i which the Feynman rules are simple.

{2) I have said this before, but it deserves emphasis: Everything we have
done in this section is purely heuristic; we have paid no attention to the
problems caused by ultraviolet divergences. Properly, everything should
he redone with careful attention to cutoffs, renormalizations, etc. Such
.arcful investigations have been done;'! the result is that the heuristic
arguments have not betrayed us: these theories are renormalizable;
renormalization does not spoil gauge invariance; ghost states never
vontribute to the absorptive parts of gauge-invariant Green'’s functions;
cte. There is one exception: in theories in which some of the gauge trans-
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formations are chiral, the familiar Adler—Bell-Jackiw triangle anomalies
can falsify our arguments. However, if the transformation properties of
the Fermi fields are chosen such that there are no anomalies in the lowest-
order triangle graphs with gauge currents at the vertices, then there are no
anomalies anywhere, and everything is all right.?®

(3) People are sometimes worried that the formal apparatus for treating
spontaneous symmetry breakdown, explained in Section 3, is not gauge-
invariant. This is true; the vacuum expectation value of a scalar field,
the effective potential, indeed, even the Feynman propagators themselves,
are not gauge-invariant objects. This is also irrelevant. In quantum elec-
trodynamics, we continually do computations using non-gauge-invariant
objects, like propagators, at intermediate stages. There is nothing wrong
with this, as long as we are careful to express our final results in terms of
gauge-invariant quantities, like masses and cross-sections. The occur-
rence of spontaneous symmetry breakdown does not affect this; the form of
the effective potential and the location of its minimum are indeed gauge-
dependent, but the values of masses and cross-sections computed with the
aid of these objects are not.

(4) At the end of Section 3, I explained how many workers prefer to do
computations in terms of shifted fields, defined by

¢'=0—(9), (543)
and to determine the parameters (¢) at the end of the computation, by
self-consistency. There is one awkwardness in doing things this way; the
shift generates a bilinear scalar—vector coupling from the scalar Lagrange
density:

DD+ - =gd'd - ALT(P) + - - (5.44)
This coupling causes a scalar-vector mixed propagator to appear in the
Feynman rules of the theory; this is no difficulty in principle, but is an
annoyance in practice. Fortunately, it is possible to cancel this term by a
clever choice of gauge.?® For our gauge condition, we choose

Fé=0"4; — f%x) -3¢ T.(P). (5.45)
where ¢ 1s a number to be determined later. If we go through what should
be by now familiar arguments, we obtain an effective Lagrange density of
the form

Log=ZL +0 D'y’
—gln* n’(Ty(9)- T.(¢) + Tod" T.($))

I uga__ ',
= 5, AL G T(9)). (5.46)
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Hence, if we choose
&E=ayg, (547)

we can cancel the annoying cross terms. Note that the interactions in this
Lagrange density are still of renormalizable type, dimension less than or
equal to four.

6 Asymptotic freedom
6.1 Operator products and deep inelastic electroproduction
The topic we are now going to discuss seems, at first glance, tohave

very little to do with the previous lectures. It is a topic in strong-interaction
physics, that of reconciling the apparent scaling in the SLAC-MIT
electroproduction experiments with the predictions of quantum field
theory. I will begin by summarizing very briefly the standard lore on this
problem.?”

(1) The electroproduction experiments at Stanford measure the total
cross sections for the process

electron + nucleon— electron + anything ,
which is, of course, the same thing as
virtual photon+ nucleon—anything .

The process is therefore described by two kinematic variables: g%, the mass
of the virtual photon, a negative number, and E, the energy of the virtual
photon in the lab frame. It is convenient to trade E for the dimensionless
variable

x= —q%/2mE, (6.1)

where m is the nucleon mass. Elementary kinematics restricts x to be
between zero and one. The nucleons in the experiment are unpolarized,
while the virtual photons can be either transverse or longitudinal; thus the
cross-section can be described in terms of two dimensionless invariants,
F{q? x), whereiis 1 or 2. The Fs are called structure functions: the details
of their definitions will not be relevant to our immediate purposes.

As —q? increases, the Fs quite rapidly lose their dependence on g?;
by g* = — (2 GeV)?, the Fs appear to be functions of x alone, within experi-
mental error. This phenomenon is called Bjorken scaling. There are two
schools of thought on Bjorken scaling. (1) Bjorken scaling is a true asymp-
totic phenomenon. It will persist even if the range of ¢ is increased
greatly. (2) SLAC energies are too small for us to believe that we are really
in the asymptotic region. Bjorken scaling is some sort of low-energy
cpiphenomenon, and has nothing to do with true high-energy limits.
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I will adopt the first position for this lecture, but you should be aware
that this is just a matter of prejudice. The second position may well be
correct; only future experiment can decide the question.

It will turn out to be convenient for our purposes to phrase matters in
terms of the moments of the structure functions,

1

Fi(g®)= j dx x"Fi(g?, x). (6.2)
0

The problem is: why do these moments become constants (within experi-

mental error) as g2 becomes large and spacelike?

(2) The operator product expansion was invented by Wilson and proved
to all orders of renormalized perturbation theory by Callan and Zimmer-
man. It is an asymptotic expansion for the product of two local operators
as the distance between them becomes small, but for our purposes it will
be most convenient to express the expansion in momentum space. Let 4
and B be any two local operators (renormalized polynomials in canonical
fields and their derivatives) and let |a) and |b) be any two states. Then,

j e *d*x (a| A(x)B(— x)|b)

:; Sascq) (a|C(0)|b). (6.3)

as g goes to Euclidean infinity. The sum is over a complete set of local
operators (all renormalized monomials in canonical fields and their deriva-
tives). The expansion is useful because the rate of growth of the coefficient
functions, the fs, is that given by naive dimensional analysis, modulo
polynomials inIn g2, (This is true to any finite order in perturbation theory;
we will later investigate whether these polynomials can pile up and change
the asymptotic behavior if we sum the perturbation series.) Thus, for any
given A and B in any given field theory, only a finite set of operators
contributes to the leading asymptotic behaviour; higher monomials
give lower powers of g2.

I emphasize that the fs are independent of the states |a) and |b). In
particular, this means the operator product expansion is unaffected by
the occurrence of spontaneous symmetry breakdown. This will be impor-
tant to us later.

If A, B, and C are other than Lorentz scalars, f,zc will have a non-
trivial tensor structure. Since f is only a function of a single four-vector,
g, it is a known tensor function of g times an unknown scalar function of
q2. It will be convenient to multiply this scalar function by a power of g2
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so that it becomes dimensionless. We will call the resulting dimensionless
scalar function f, g

(3) By choosing |a) and |b) to be one-nucleon states, and 4 and B to
be electromagnetic currents, we can use the operator product expansion to
get an expression for the moments of the structure functions. The calcula-
tion is straightforward, and I do not want to do it in detail here; the
result 1s of the form

F?(qz) = Z d?cf-ABc(qz) (a|C(0)|b>R- (6.4)
c

Here the ds are constant coefficients, terms that are less important by
powers of g* than the terms retained have been dropped, the subscript R
mdicates a reduced (scalar) matrix element, and, in any given theory, for
fixed i and n, the sum runs over only a finite set of Cs.

Thus the problem becomes: why do the fs become constants (within
cxperimental error) as g% becomes large and negative?

Because of the logarithmic polynomials mentioned before, this constant
hehavior is not an obvious prediction of field theory. To be specific, let us
consider a theory in which there is only one coupling constant, like the
standard quark-vector-gluon model. In this case, a perturbative expan-
sion of one of the fs typically yields an asymptotic expression like

f=ao+a1.6"In ¢* +a,09% +a,,9*(In > + - - - (6.5)
where the as are constant coefficients. Since we are interested in both large
i (strong interactions) and large g* (asymptotic behaviour), this is worse
than useless. Even for the (unrealistic) case of small g, Eq. (6.5) tells us
noting about asymptotic behaviour, for the largeness of the logarithm
cventually overcomes the smallness of g. The only case in which we can
predict asymptotic behaviour is free field theory (g =0); in this case, the
/~ are indeed constants. It is for this reason that it is sometimes said that,
at high negative g2, the effects of the interactions seem to disappear, and
the theory behaves as if it were free. At the moment, this may seem to you to
he an excessively dramatic way of describing Bjorken scaling; neverthe-
less, we shall see, for a certain class of field theories, this is exactly what
ltappens. Before we do this though, we need to develop a systematic

formalism for going beyond perturbation theory and summing up the
logarithms in Eq. (6.5).

h . M ssless field theories and the renormalization group®®
It can be shown, in any renormalizable field theory, to all orders of
perturbation theory, that the asymptotic behaviour of the coefficient
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functions in the operator product expansion is the same as it would be ina
massless field theory. By a massless field theory I mean one that has only
dimensionless coupling constants in its Lagrangian; not only are masses
excluded but also interactions with dimensionful coupling constants,
like cubic meson self-couplings. This is very plausible; the coefficient
functions depend only on a single momentum, and this momentum is
going to Euclidean infinity, getting as far as it can from the mass shell,
and therefore losing all memory of the masses. (I emphasize that this does
not mean that the structure functions themselves are the same as they
would be in a massless theory. Eq. (6.4) contains not just f, but also
(a|C|b), and this stays on the mass shell.)

Thus we need only analyze the behavior of the fs in a massless theory.
A massless renormalizable field theory is parametrized by a set of renor-
malized dimensionless coupling constants, which I will call g°. These may
be either Yukawa coupling constants, quartic meson self-interaction
constants, or gauge field coupling constants. In addition, another param-
eter is required to complete the description — a mass, M. This extra
parameter is needed to define the others (and the scale of the renormalized
fields).

Let me explain why this is so, using the simplest renormalizable field
theory, A¢* theory, as an example. In the massive version of this theory,
the renormalized coupling constant, 4, is usually defined as the value of
I'™® on the mass shell, at the symmetry point, s=t=u. (Sometimes it is
defined as the value of I'® when all external momenta vanish, as in Eq.
(3.17b), but this becomes the same definition when the mass vanishes.)
Likewise, the renormalized field is defined as the field scaled in such a way
that the derivative of I'?! is one on the mass shell (or, sometimes, at zero
momentum). However, for a massless theory, these definitions are un-
workable; all of the normal thresholds collapse on the renormalization
point, and it is obviously bad policy to define A as the value of a Green’s
function at the locus of an infinite number of singularities. The cure for
this disease is simple; we define A as the value of I'® at some point in
Euclidean space, where there are no singularities, even in the massless
theory. For example, we would define A as the value of ' at s =t =u, with
all external momenta squared equal to — M?. M can be anything; any M
1 as good as any other M, so long as it is not zero. Likewise, we could define
the scale of the field by demanding that the derivative of I''? be one when
p? = — M?. These definitions can be extended in an obvious way to more
complicated theories with other kinds of couplings.

Thus, the parameterization of a massless field theory requires a mass, M.
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But M is arbitrary; in a given physical theory, if you change the value of
M, this can always be compensated for by an appropriate change in the gs
and in the scales of the renormalized fields, because the only function of
M is to define these quantities. Phrased in equations, if we make a small
change in M,

M-M(1+¢), (6.6a)

where ¢ is infinitesimal, this can always be compensated for by an appropri-
ate small change in the coupling constants

g°—g"+ e, (6.6b)
and a corresponding small change in the scale of renormalized operators,
e.g.

Ax)—> (1 +7£)A(X). (6.6¢)
By dimensional analysis, the s and ys can depend only on the gs,
B =B%9), v4=749), (6.7)

where, to simplify notation, a single g in the argument of a function stands
for all the gs. If A is one of a set of operators that can mix with one another
as a result of renormalization (as is the case, for example, with ¢* and
040" @), Eq. (6.6c) should be replaced by a matrix equation. However, for
simplicity, we will ignore this possible complication here.

The infinitesimal transformations (6.6) define a one-parameter group,
called the renormalization group. All physical quantities must be invariant
under this group. In particular, the fs must be invariant; thus

d . .0 7
[M d_M+ﬁ (9) gg—a+ )’ABC(Q)] Sapc=0. (6.8)

where

Yapc=Ya+V8—Yc. (6.9)

Of course, similar equations can be derived for any other object in the
theory, in particular, for Green’s functions. Only the y-terms depend on
the object under consideration.

Since these renormalization-group equations are exactly valid, they
must be valid order-by-order in renormalized perturbation theory. Thus,
from perturbation expansions of Green’s functions, it is possible to deduce
perturbation expansions for the fs and ys. If this is done for the quark -
vector-gluon model, for example, one finds that the power series for f8
begins with terms of order ¢*, while those for either the quark or gluon y
begin with terms of order ¢*. This is reasonable, because f reflects the
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effects of coupling-constant renormalization, which begin at order g3,
while y reflects those of wave-function renormalization, which begin at
order g2.

6.3 Exact and approximate solutions of the renormalization group

equations

The differential equations of the renormalization group are a
mathematical expression of a physical triviality, that the only function of
the mass M is to define the renormalized coupling constants and the scale
of the renormalized fields. Nevertheless, they can, in favorable circum-
stances, be used to obtain highly non-trivial information about the
asymptotic behaviour of the theory. The basic reason for this is simple
dimensional analysis; since f is dimensionless,

fABCz fABC(Q/ M, g), (6.10)

where Q =(—g%)*. Thus, knowledge of the (trivial) dependence on M is
equivalent to knowledge of the (non-trivial) dependence on Q.

To work this out in detail, let me assume that we know the fis and ys
exactly. Then there is a standard method?® for solving the linear partial

differential equation
G G - |
M—+p° M, g)=0, 6.11
[ YA agﬁv(a)] fQ/M, g) (6.11)
where I have suppressed the ABC subscript for notational simplicity. The
standard method goes in two steps. First, one constructs g“(g, t), a set
of functions of the gs and a single extra variable, t, defined as the solution
to the ordinary differential equations

dg'?/dt = %g"), (6.12q)
with the boundary condition

g'“(g, 0) =g (612b)
Then, the general solution to Eq. (6.11) is

_ In{Q/M]

f=Flg'(g, In[Q/M])) x exp L 7(g'(g, )dt (6.13)

where F 1s an arbitrary function. Thus we see the power of the renormaliza-
tion group; if we know everything for all gs at @ =M, then we know every-
thing for all gs at all Qs.

Unfortunately, we do not know everything for all gs. Typically, we
only know the first few terms in a power series in g. Even in this case,
though, it is possible to use the renormalization group to squeeze oult
extra information. To show how this is done, let me return to the quark
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Abelian-vector-gluon model. Here I have argued that
Blg)=bg’ +O(g°). (6.14)
where b is a numerical coefficient. The only thing I will ask you to take

on trust is that, if you actually do the relevant Feynman calculations, you
will find that b is positive. Eq. (6.12) then becomes

dg'/dt=bg"> +0(g"®). (6.15)

Now let us attempt to construct an approximate solution of this equation,
for small g, by ignoring the terms of order g°. The solution is trivially
obtained by quadratures,

11
= o, (6.16)
g* g¢°
or
2
Qz_l%tgz. (6.17)

When can we trust this approximate solution? When ¢ gets large and posi-
tive, the approximate ¢' becomes large, and the terms we have neglected
become comparable to the terms we have retained. For this range of ¢, the
approximation is garbage. On the other hand, as ¢t becomes large and
negative, the approximate g’ becomes smaller and smaller, and the terms
we have neglected therefore become smaller and smaller than the terms
we have retained. For this range of ¢, the approximation is wonderful.

Now, when we plug ¢g' into Eq. (6.13), t becomes In(Q/M). Thus our
approximation gets better and better the smaller Q is. Furthermore, we
can improve on it as much as we want, simply by doing more perturbation
calculations to get the higher terms in the expansions of f, y, and F.

To phrase the whole thing more generally, an ordinary perturbation
expansion, like (6.5), has two conditions for its reliability, |g| <1 and
IIn(Q/M)| < 1. The approximation scheme I have described replaces these
with a single condition, |g'| 1. This single condition may hold in regions
where the logarithm is large; in the case at hand, this includes the region of
arbitrarily large negative In(Q/M).

This is marvelous stuff; the renormalization group has tamed the log-
arithms in Eq. (6.5). Unfortunately, this is of no physical interest, for two
reasons. (1) To start the approximation, g must be small. We are interested
in strong interactions. (2) We can tame the logarithms in the region of
small Q, the infrared region. We are interested in large Q, the ultraviolet
region. Indeed, our whole method of approach is nonsense in the region
of small @, because, when ¢ 1s small, 1t 1s no longer sensible to neglect
particle masses.
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Now let us do another example, pure Yang—-Mills theory for some
simple Lie group. Here again there is only one coupling constant, and
coupling-constant renormalization begins in order g>, so this is hardly a
new example. Everything will be exactly the same as for the quark-
vector-gluon model; the only possible difference can be in the value of b,
the constant in Eq. (6.15). I now announce the great discovery of the last
year: b is negative.>® (This is true whatever the simple Lie group.)

Thus, our previous analysis is turned on its head. Large negative ¢ is
replaced by large positive t, infrared by ultraviolet. There exists a family
of renormalizable field theories for which the logarithms can be tamed in
the ultraviolet region! In this region, we obtain, from lowest-order per-
turbation theory and the renormalization group, an approximation that
gets better and better as Q gets larger and larger. Furthermore, we can
improve on the approximation as much as we want, simply by doing more
perturbation calculations to get the higher terms in the expansions of
p,7,and F.

6.4 Asymptotic freedom

What we have discovered for pure Yang-Mills theory is a special
case of a phenomenon called asymptotic freedom. A general renormaliz-
able field theory is said to be asymptotically free if, for small ¢°,

lim g*(g, t)=0. (6.18)

| S ¢]

All my remarks for pure Yang—Mills theory carry over without alteration
to a general asymptotically freetheory; in particular, asymptotic behaviour
for large Q is exactly computable from simple perturbation theory and the
renormalization group. In principle, it is simple to test whether any given
field theory is asymptotically free; all one needs to do is compute the
B-functions to lowest non-vanishing order, and then solve the differential
equations (6.12). In practice, the test is difficult to carry out; the computa-
tion of the B-functions is straightforward, but, in the typical case, the
differential equations can not be solved analytically, and one has to
resort to tedious case-by-case numerical integration. Thus, although
many asymptotically free theories have been discovered, and a few
general theorems have been proved, we have nothing like a complete
classification of asymptotically free theories. I will tell you what is known
about the classification problem shortly; first, though, 1 would like to
convince you that asymptotic freedom offers a possible explanation of
Bjorken scaling.

At first thought, this is a preposterous suggestion. Asymptotic freedom
1s a property of field theories for small coupling constants. and Bjorken
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scaling is a strong-interaction effect. Nevertheless, it is possible, with a
little hand-waving, to establish a connection. For simplicity, let us consider
an asymptotically free theory with only one coupling constant, g. By
assumption, f is negative for small positive g. Let us denote the first posi-
tive zero of § by g,. We certainly can not compute g, perturbatively; if
we were asked to guess, we would probably guess that g; was something
like 1 or = or maybe even infinity (if 8 has no zeros). In any case, it certainly
can not be a small number; for small coupling constants, we trust per-
turbation theory, and perturbation theory tells us f 1s negative. Whatever
the value of g,, for any g less than g,, § is negative. Therefore, if we start
from such a g, and integrate

dg’/dt=p(g), (6.19)

g’ will decrease. As we continue to integrate the equation, it will continue
to decrease, until we finally reach the region of small ¢’, where formulae
like Eq. (6.17) will be valid. Thus, the asymptotic expressions derived
from renormalization-group-improved perturbation theory are valid for
theories defined by large coupling constants as well as small. If we are
very lucky, and f§ has no positive zeros, they will be valid for all values of g.

The decrease from large to small g’ can be quite rapid. As an example,
let us take the result of the lowest-order perturbation theory, Eq. (6.16),
and imagine that it is valid for large coupling constants as well as small.
(I emphasize that this is undoubtedly false; I am just using it as a simple
model of rapid decrease.) For a pure Yang—Mills theory with gauge group
SU@3),

b= —11/16zr2. (6.20)
Thus, Eq. (6.16) becomes

2N —1 2\ 1

g g 11t

Z =2 —. 6.21
(47:) (rm) T 6.21)

Now let us imagine that we start out with some very large value of g*/4x,
say 103, at t=0. Then by going to t=1 (that is to say, by increasing Q
by a factor of ) we arrive at g’2/4rx =2n/11. From this point on, the varia-
tion is quite slow; multiplying Q by e again merely halves g, and multi-
plication by e? is required to halve it again, Thus we are led to conjecture
a qualitative picture in which a very large value of ¢’ at low momentum
zooms down with lightning rapidity to a small value, and then inches its
way to zero.

What sort of asymptotic behaviour do we predict, once we are in the
region of small ¢'? To evalunte Fq. (6.13), we need to know not only ¢,



178 Secret symmetry . spontaneous symmetry breakdown, gauge fields

but also y. For small ¢,

1g)=cg’? +o(g?), (6.22)
where ¢ is a numerical coefficient. From Eq. (6.17), for large ¢,

g = —1/2bt, (6.23)
whence,

y ~ —¢/2bt. (6.24)

Thus, the significant variation in Eq. (6.13) comes from the upper limit in
the integral; for large ¢,

f =K[In(Q/M)] /% (6.25)

where K 1s a constant. This is not Bjorken scaling; the moments of the
structure functions are not constants, but powers of logarithms. Neverthe-
less, a power of a logarithm is a very slowly varying function. I have not
studied the SLAC-MIT data myself, but I am told by those who have
looked at them (with optimistic eyes) that they can be fit as well with
powers of logarithms as with constants.

Note that, for any given model, these powers can be computed by lowest-
order perturbative calculations.®’ For example, the popular colored-
quark model, with a color octet of vector gluons, is an asymptotically
free theory with only one coupling constant. In this model, the moments
of the isospin-odd (proton minus neutron) transverse structure function
have the asymptotic form

F(n) o (ln Q)[— 0-296In{n+2) +0-05 11. (626)

These are rather small powers for small moments (—0.2 for n=0), and
grow slowly with n, reaching — 1 only for n=27. Of course, since we do not
know the constant coefficients of the moments, we can not reconstruct the
structure functions from formulae like Eq. (6.26). However, it is easy to
construct functions whose moments obey Eq. (6.26) and which display
quite small deviations from scaling except for x very near to 1. (The very
high moments are obviously sensitive only to the behavior of F(g? x)
in this neighborhood.)

If we accept asymptotic freedom as the explanation of Bjorken scaling,
then, whatever the field theory of the strong interactions, it must be
asymptotically free. (Bjorken scaling places no restrictions on the weak
and electromagnetic interactions; these are negligible in the relevant
energy region.) Thus, it is important to know what field theories are
asymptotically free. Here 1s what we know now:

(1) All pure Yang-Mills theories based on groups without Abelian
factors are asymptotically free.>°
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(2) Theories of non-Abelian gauge fields and Fermi multiplets are
sometimes asymptotically free and sometimes not. The fermions make a
positive contribution to the S-function; if the theory has too many fer-
mions, the sign of f is reversed and asymptotic freedom is lost. ‘Too many’
is typically a large number. For example, if the gauge group is SU(3), six-
teen triplets of fermions are not too many.>°

(3) Much less is known about theories of non-Abelian gauge ficlds and
scalar multiplets; typically, these theories involve a large number of quar-
tic meson coupling constants, and this makes the investigation of the
differential equations difficult. There are some theories involving scalar
fields which are known to be asymptotically free.*? At the moment, there
are no known asymptotically free theories for which all the gauge mesons
may be given a mass by scalar vacuum expectation values. I do not view
this as a serious difficulty, for two reasons. (1) The investigation 1s still
in its early stages; such a theory may be found next week. (2) Even if no
such theory is found, we are talking about models of the strong interac-
tions; although the couplings may become weak at large momentum, they
are certainly strong at small momentum, and this is where spontaneous
symmetry breakdown occurs. Therefore, symmetry breakdown might well
occur non-perturbatively, as discussed in Section 2.6.

(4) Any renormalizable field theory that does not involve non-Abelian
gauge fields is not asymptotically free.3?

This last result has far-reaching consequences: if we accept asymptotic
freedom as the explanation for Bjorken scaling, then the field theory of the
strong interactions must be asymptotically free. If it is to be asymptotically
free, then it must involve non-Abelian gauge fields. Since no-one has ever
seen a massless hadron, these gauge fields must acquire masses. The only
known mechanism by which gauge fields can acquire masses is through
spontaneous symmetry breakdown. Thus, the field theory of the strong
interactions must be a spontaneously broken gauge field theory.

This is a striking conclusion, suggestive of deep connections between
the strong and weak interactions. It implies a complete reversal of the
conventional wisdom of only a few years ago. We used to believe that at
high (Euclidean) energies the weak interactions became strong; now we
believe that the strong interactions become weak.

6.5 No conclusions

I know of no way to put a proper conclusion to these lectures,
because 1 know of no way to judge the validity of the ideas we have
discussed. They are certainly 1deas of great beauty, and they certainly
resolve many long-standing theoretical problems, but they equally
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certainly have not yet quantitatively confronted experiment. Spon-
taneously broken gauge field theories are in the uncomfortable position
of SU(3) without the Gell-Mann-Okubo formula, or current algebra
without the Adler—Weisberger relation. There are good reasons for this,
which I explained in the Introduction, but still one can not help feeling
nervous. It is very possible that this whole beautiful and complex structure
will be swept into the dustbin of history by a thunderbolt from Batavia.
All we can do is wait and see.

Appendix : One-loop effective potential in the general case

This appendix is a computation of the one-loop effective potential,
V, for a general renormalizable field theory. Such a theory contains three
types of interactions: spinless-meson self-interactions, Yukawa couplings
of mesons and fermions, and gauge-field interactions. We shall see that in
an appropriate gauge (Landau gauge), these three types of interactions
contribute additively to the effective potential in one-loop approximation;
thus,

V=U+TVa+ WK+ V,+V,, (A.1)

where the first term is the zero loop effective potential, the next three
terms are the contributions from the three types of interactions, and the
last term is a quartic polynomial in ¢, the finite residue of the renormaliza-
tion counterterms, determined once we state our renormalization con-
ditions. The method of computation will be a direct generalization of the
diagrammatic summation of Section 3.**

(1) Spinless-meson contribution. Here the analysis i1s almost identical to
that of Section 3; the only difference is that there may be many meson
fields. Thus each internal line in the graphs of Fig. 5 carries an index a, b,
etc., labeling the meson field, and the black dots represent matrices for the
transition from a meson of type a to one of type b:

i[U" ()]s =182 U/29°0¢" |y =, (A.2)
In computing the graphs, we must not only integrate over the internal
momentum, but also sum over the internal indices. This is equivalent to
multiplying the matrices around the loop and then taking the trace. Thus,
from Eq. (3.33), we obtain

Vo Tr(LU"(¢)]* In U"(,)). (A.3)

" 64n?

(2) Fermion contribution. Here again the graphs are almost the same as
in Fig. 5; the only difference is that the internal lines are fermion lines.
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(Thus, you should imagine them as carrying arrows.) The relevant term
in the Lagrangian 1s

L =i e+ ma( W+ (A.4)
Here mis the sum of two terms: a constant term (the fermion masses) and a

term linear in ¢ (the Yukawa couplings). It can also be broken into two
parts in a different way:

m = A +iBys. (A.5)

(I use a Hermitian ys.) The reality of the Lagrangian implies that A and
B are Hermitian matrices. I have chosen the name m for this matrix
because m({¢)) is the fermion mass matrix, in zero-loop approximation.
The computation can be made to look like the preceding one by group-
ing the terms in pairs:
-m—l—ml---z---mm*i---. (A.6)

PP p*

Now the only differences between the fermion computation and the
boson one are: (1) The combinatoric factor of 4 is missing because the
lines have arrows on them, and thus the graphs are not invariant under
reflections. (2) This is compensated for by the fact that the odd terms in the
infinite series vanish when we take the trace on Dirac indices. (3) There is
an overall Fermi minus sign. Thus we obtain

V= —

642 Tr([ mm' (@)1 In mm'(¢,)). | (A.7)

Note that here the trace is on Dirac indices as well as internal indices.

(3) Gauge-field contribution. If we work in a general gauge, the trilinear
coupling between gauge fields and spinless mesons can lead to troublesome
graphs of the form shown in Fig. 6. (Here the straight line is a spinless
meson, and the wiggly line a gauge field.) However, if we work in Landau
gauge,

. Gy — Kok, k?

D,,=1 2 (A.8)

Fig. 6
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these graphs vanish. This is because the external meson carries zero
momentum; the sum of the meson momenta is the same as the gauge-field
momentum, and gives zero when we contract it with the propagator (A.8).
Hence we need only worry about the quadrilinear coupling

L= AL AMEG)+ (A9)
where

MZ, =gy T.¢) (T, 9), (A.10)
and g, is the coupling constant of the ath gauge field. M?((@)) is the
gauge-meson mass-squared matrix in zero-loop approximation, whence
its name.

The computation is now identical with the preceding case, except that
it is now gauge fields that run around the loop. Thus,

Ve=ganz

The factor of three comes from the trace of the propagator (A.8).

Tr(LM*(¢)]* In M*(g.))- (A.11)
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